Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

What is the best diet for cardiovascular wellness? A comparison of different nutritional models

Abstract

Cardiovascular diseases (CVD) represent to date the leading cause of mortality in both genders in the developed countries. In this context, a strong need for CVD prevention is emerging through lifestyle modification and nutrition. In fact, several studies linked CVD with unhealthy nutrition, alcohol consumption, stress, and smoking, together with a low level of physical activity. Thus, the primary aim is to prevent and reduce CVD risk factors, such as impaired lipid and glycemic profiles, high blood pressure and obesity. Different types of diet have been, therefore, established to optimize the approach regarding this issue such as the Mediterranean diet, Dietary Approaches to Stop Hypertension diet (DASH), vegetarian diet, ketogenic diet, and Japanese diet. Depending on the diet type, recommendations generally emphasize subjects to increase vegetables, fruits, whole grains, and pulses consumption, but discourage or recommend eliminating red meat, sweets, and sugar-sweetened beverages, along with processed foods that are high in sugar, salt, fat, or low in dietary fiber. In particular, we evaluated and compared the peculiar aspects of these well-known dietary patterns and, thus, this review evaluates the critical factors that increase CVD risk and the potential application and benefits of nutritional protocols to ameliorate dietary and lifestyle patterns for CVD prevention.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Garcia-Arellano A, Martínez-González MA, Ramallal R, Salas-Salvadó J, Hébert JR, Corella D, et al. Dietary inflammatory index and all-cause mortality in large cohorts: the SUN and PREDIMED studies. Clin Nutr. 2019;38:1221–31.

    PubMed  Google Scholar 

  2. 2.

    LaCroix AZ, Bellettiere J, Rillamas-Sun E, Di C, Evenson KR, Lewis CE, et al. Association of light physical activity measured by accelerometry and incidence of coronary heart disease and cardiovascular disease in older women. JAMA Netw Open. 2019;2:e190419.

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    Vincent L, Leedy D, Masri SC, Cheng RK. Cardiovascular disease and cancer: is there increasing overlap? Curr Oncol Rep. 2019;21:47.

    PubMed  Google Scholar 

  4. 4.

    Doughty KN, Del Pilar NX, Audette A, Katz DL. Lifestyle medicine and the management of cardiovascular disease. Curr Cardiol Rep. 2017;19:116.

    PubMed  Google Scholar 

  5. 5.

    Konstantinidou V, Daimiel L, Ordovás JM. Personalized nutrition and cardiovascular disease prevention: from Framingham to PREDIMED. Adv Nutr. 2014;5:368S–71S.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Lanier JB, Bury DC, Richardson SW. Diet and physical activity for cardiovascular disease prevention. Am Fam Physician. 2016;93:919–24.

    PubMed  Google Scholar 

  7. 7.

    Heilbronn LK, Ravussin E. Calorie restriction and aging: review of the literature and implications for studies in humans. Am J Clin Nutr. 2003;78:361–9.

    CAS  PubMed  Google Scholar 

  8. 8.

    Velthuis-te Wierik EJ, van den Berg H, Schaafsma G, Hendriks HF, Brouwer A. Energy restriction, a useful intervention to retard human ageing? Results of a feasibility study. Eur J Clin Nutr. 1994;48:138–48.

    CAS  PubMed  Google Scholar 

  9. 9.

    Loft S, Velthuis-te Wierik EJ, van den Berg H, Poulsen HE. Energy restriction and oxidative DNA damage in humans. Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive. Oncology. 1995;4:515–9.

    CAS  Google Scholar 

  10. 10.

    Verdery RB, Walford RL. Changes in plasma lipids and lipoproteins in humans during a 2-year period of dietary restriction in Biosphere 2. Arch Intern Med. 1998;158:900–6.

    CAS  PubMed  Google Scholar 

  11. 11.

    Walford RL, Harris SB, Gunion MW. The calorically restricted low-fat nutrient-dense diet in Biosphere 2 significantly lowers blood glucose, total leukocyte count, cholesterol, and blood pressure in humans. Proc Natl Acad Sci USA. 1992;89:11533–7.

    CAS  PubMed  Google Scholar 

  12. 12.

    Walford RL, Mock D, Verdery R, MacCallum T. Calorie restriction in biosphere 2: alterations in physiologic, hematologic, hormonal, and biochemical parameters in humans restricted for a 2-year period. J Gerontol Ser A Biol Sci Med Sci. 2002;57:B211–224.

    Google Scholar 

  13. 13.

    Lefevre M, Redman LM, Heilbronn LK, Smith JV, Martin CK, Rood JC, et al. Caloric restriction alone and with exercise improves CVD risk in healthy non-obese individuals. Atherosclerosis. 2009;203:206–13.

    CAS  PubMed  Google Scholar 

  14. 14.

    Robertson TL, Kato H, Rhoads GG, Kagan A, Marmot M, Syme SL, et al. Epidemiologic studies of coronary heart disease and stroke in Japanese men living in Japan, Hawaii and California. Incidence of myocardial infarction and death from coronary heart disease. Am J Cardiol. 1977;39:239–43.

    CAS  PubMed  Google Scholar 

  15. 15.

    Nuno DW, Lamping KG. Dietary fatty acid saturation modulates sphingosine-1-phosphate-mediated vascular function. J Diabetes Res. 2019;2019:1–11.

    Google Scholar 

  16. 16.

    Moreira APB, Texeira TFS, Ferreira A. Influence of a high-fat diet on gut microbiota, intestinal permeability and metabolic endotoxaemia. Br J Nutr. 2012;108:801–9.

    CAS  PubMed  Google Scholar 

  17. 17.

    Clifton PM, Keogh JB. A systematic review of the effect of dietary saturated and polyunsaturated fat on heart disease. Nutr Metab Cardiovasc Dis. 2017;27:1060–80

    CAS  PubMed  Google Scholar 

  18. 18.

    Lee JY, Zhao L, Youn HS, Weatherill AR, Tapping R, Feng L, et al. Saturated fatty acid activates but polyunsaturated fatty acid inhibits toll-like receptor 2 dimerized with toll-like receptor 6 or 1. J Biol Chem. 2004;279:16971–9.

    CAS  PubMed  Google Scholar 

  19. 19.

    Wong SW, Kwon M, Choi AMK, Kim H, Nakahira K, Hwang DH. Fatty acids modulate toll-like receptor 4 activation through regulation of receptor dimerization and recruitment into lipid rafts in a reactive oxygen species-dependent manner. J Biol Chem. 2009;284:27384–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Gault C, Obeid L, Hannun Y. An overview of sphingolipid metabolism: from synthesis to breakdown. Adv Exp Med Biol. 2010;688:1–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Keys A, Menotti A, Karvonen MJ, Aravanis C, Blackburn H, Buzina R, et al. The diet and 15-year death rate in the seven countries study. Am J Epidemiol. 1986;124:903–15.

    CAS  PubMed  Google Scholar 

  22. 22.

    Julibert A, Bibiloni MDM, Tur JA. Dietary fat intake and metabolic syndrome in adults: a systematic review. Nutr Metab Cardiovasc Dis. 2019;29:887–905.

    CAS  PubMed  Google Scholar 

  23. 23.

    Skop-Lewandowska A, Zając J, Kolarzyk E. Overweight and obesity vs. simple carbohydrates consumption by elderly people suffering from diseases of the cardiovascular system. Ann Agric Environ Med. 2017;24:575–80.

    PubMed  Google Scholar 

  24. 24.

    Miller M, Stone N, Ballantyne C, Bittner V, Criqui M, Ginsberg H, et al. Triglycerides and cardiovascular disease: a scientific statement from the American Heart Association. Circulation. 2011;123:2292–333.

    PubMed  Google Scholar 

  25. 25.

    Rippe JM, Angelopoulos TJ. Added sugars and risk factors for obesity, diabetes and heart disease. Int J Obesity. 2016;40:S22–7.

    CAS  Google Scholar 

  26. 26.

    Obarzanek E, Sacks F, Vollmer W, Bray G, Miller E III, Lin P, et al. DASH Research Group. Effects on blood lipids of a blood pressure-lowering diet: the Dietary Approaches to Stop Hypertension (DASH) Trial. Am J Clin Nutr. 2001;74:80–9.

    CAS  PubMed  Google Scholar 

  27. 27.

    Howard B, Van Horn L, Hsia J, Manson J, Stefanick M, Wassertheil-Smoller S, et al. Low-fat dietary pattern and risk of cardiovascular disease: the Women’s Health Initiative Randomized Controlled Dietary Modification Trial. JAMA. 2006;295:655–66.

    CAS  PubMed  Google Scholar 

  28. 28.

    Hellerstein MK, Schwarz JM, Neese RA. Regulation of hepatic de novo lipogenesis in humans. Ann Rev Nutr. 1996;16:523–57.

    CAS  Google Scholar 

  29. 29.

    Stanhope KL, Schwarz JM, Keim NL, Griffen SC, Bremer AA, Graham JL, et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Investig. 2009;119:1322–34.

    CAS  PubMed  Google Scholar 

  30. 30.

    Ha V, Sievenpiper J, de Souza R, Chiavaroli L, Wang D, Cozma A, et al. Effect of fructose on blood pressure: a systematic review and meta-analysis of controlled feeding trials. Hypertension. 2012;59:787–95.

    CAS  PubMed  Google Scholar 

  31. 31.

    Jones JR, Lineback DM, Levine MJ. Dietary reference intakes: implications for fiber labeling and consumption: a summary of the International Life Sciences Institute North America Fiber Workshop, June 1–2, 2004, Washington, DC. Nutr Rev. 2006;64:31–8.

    PubMed  Google Scholar 

  32. 32.

    Lia A, Hallmans G, Sandberg AS, Sundberg B, Aman P, Andersson H. Oat beta-glucan increases bile acid excretion and a fiber-rich barley fraction increases cholesterol excretion in ileostomy subjects. Am J Clin Nutr. 1995;62:1245–51.

    CAS  PubMed  Google Scholar 

  33. 33.

    Brown L, Rosner B, Willett WW, Sacks FM. Cholesterol-lowering effects of dietary fiber: a meta-analysis. Am J Clin Nutr. 1999;69:30–42.

    CAS  PubMed  Google Scholar 

  34. 34.

    Chen JP, Chen GC, Wang XP, Qin L, Bai Y. Dietary fiber and metabolic syndrome: a meta-analysis and review of related mechanisms. Nutrients. 2018;10:24.

    Google Scholar 

  35. 35.

    Soliman GA. Dietary fiber, atherosclerosis, and cardiovascular disease. Nutrients. 2019;11:1155.

    CAS  PubMed Central  Google Scholar 

  36. 36.

    Kim Y, Je Y. Dietary fiber intake and total mortality: a meta-analysis of prospective cohort studies. Am J Epidemiol. 2014;180:565–73.

    PubMed  Google Scholar 

  37. 37.

    Kim Y, Je Y. Dietary fibre intake and mortality from cardiovascular disease and all cancers: a meta-analysis of prospective cohort studies. Arch Cardiovasc Dis. 2016;109:39–54.

    PubMed  Google Scholar 

  38. 38.

    GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;385:117–71.

    Google Scholar 

  39. 39.

    Bohn SK, Myhrstad MC, Thoresen M, Holden M, Karlsen A, Tunheim SH, et al. Blood cell gene expression associated with cellular stress defense is modulated by antioxidant-rich food in a randomised controlled clinical trial of male smokers. BMC Med. 2010;8:54.

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Anderson JW, Baird P, Davis RH Jr, Ferreri S, Knudtson M, Koraym A, et al. Health benefits of dietary fibre. Nutr Rev. 2009;67:188–205.

    PubMed  Google Scholar 

  41. 41.

    Alissa EM, Ferns GA. Dietary fruits and vegetables and cardiovascular diseases risk. Crit Rev Food Sci Nutr. 2017;57:1950–62.

    CAS  PubMed  Google Scholar 

  42. 42.

    Aune D, Giovannucci E, Boffetta P, Fadnes LT, Keum N, Norat T, et al. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality-a systematic review and dose-response meta-analysis of prospective studies. Int J Epidemiol. 2017;46:1029–56.

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Sánchez-Muniz FJ. Dietary fibre and cardiovascular health. Nutr Hosp. 2012;27:31–45.

    PubMed  Google Scholar 

  44. 44.

    Huang T, Xu M, Lee A, Cho S, Qi L. Consumption of whole grains and cereal fiber and total and cause-specific mortality: Prospective analysis of 367,442 individuals. BMC Med. 2015;13:59.

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Casas R, Castro-Barquero S, Estruch R, Sacanella E. Nutrition and Cardiovascular Health. Int J Mol Sci. 2018;19:3988.

    PubMed Central  Google Scholar 

  46. 46.

    Korcz E, Kerényi Z, Varga L. Dietary fibers, prebiotics, and exopolysaccharides produced by lactic acid bacteria: potential health benefits with special regard to cholesterol-lowering effects. Food Funct. 2018;9:3057–68.

    CAS  PubMed  Google Scholar 

  47. 47.

    McKeown NM, Meigs JB, Liu S, Saltzman E, Wilson PW, Jacques PF. Carbohydrate nutrition, insulin resistance, and the prevalence of the metabolic syndrome in the Framingham Offspring Cohort. Diabetes Care. 2004;27:538–46.

    PubMed  Google Scholar 

  48. 48.

    Liu S, Buring JE, Sesso HD, Rimm EB, Willett WC, Manson JE. A prospective study of dietary fiber intake and risk of cardiovascular disease among women. J Am Coll Cardiol. 2002;39:49–56.

    PubMed  Google Scholar 

  49. 49.

    Marques FZ, Nelson E, Chu PY, Horlock D, Fiedler A, Ziemann M, et al. High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation. 2017;135:964–77.

    CAS  PubMed  Google Scholar 

  50. 50.

    Surampudi P, Enkhmaa B, Anuurad E, Berglund L. Lipid lowering with soluble dietary fiber. Curr Atheroscler Rep. 2016;18:75.

    PubMed  Google Scholar 

  51. 51.

    Ripsin CM, Keenan JM, Jacobs DR Jr, Elmer PJ, Welch RR, Van Horn L, et al. Oat products and lipid lowering. A meta-analysis. JAMA. 1992;267:3317–25.

    CAS  PubMed  Google Scholar 

  52. 52.

    Ho HV, Sievenpiper JL, Zurbau A, Blanco Mejia S, Jovanovski E, Au-Yeung F, Jenkins AL, Vuksan V. The effect of oat β-glucan on LDL-cholesterol, non-HDL-cholesterol and apoB for CVD risk reduction: a systematic review and meta-analysis of randomised-controlled trials. Br J Nutr. 2016;116:1369–82.

    CAS  PubMed  Google Scholar 

  53. 53.

    Othman RA, Moghadasian MH, Jones PJ. Cholesterol-lowering effects of oat beta-glucan. Nutr Rev. 2011;69:299–309.

    PubMed  Google Scholar 

  54. 54.

    Whitehead A, Beck EJ, Tosh S, Wolever TM. Cholesterol lowering effects of oat beta-glucan: a meta-analysis of randomized controlled trials. Am J Clin Nutr. 2014;100:1413–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Mirmiran P, Bahadoran Z, Khalili Moghadam S, Zadeh Vakili A, Azizi F. A prospective study of different types of dietary fiber and risk of cardiovascular disease: Tehran Lipid and Glucose Study. Nutrients. 2016;8:686.

    PubMed Central  Google Scholar 

  56. 56.

    Yang T, Santisteban MM, Rodriguez V, Li E, Ahmari N, Carvajal JM, et al. Gut dysbiosis is linked to hypertension. Hypertension. 2015;65:1331–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Mizia-Stec K, Haberka M, Mizia M, Chmiel A, Gieszczyk K, Lasota B, et al. N-3 Polyunsaturated fatty acid therapy improves endothelial function and affects adiponectin and resistin balance in the first month after myocardial infarction. Arch Med Sci. 2011;7:788–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Tribulova N, Szeiffova Bacova B, Egan Benova T, Knezl V, Barancik M, Slezak J. Omega-3 index and anti-arrhythmic potential of omega-3 PUFAs. Nutrients. 2017;9:1191.

    PubMed Central  Google Scholar 

  59. 59.

    Adkins Y, Kelley DS. Mechanisms underlying the cardioprotective effects of omega-3 polyunsaturated fatty acids. J Nutr Biochem. 2010;21:781–92.

    CAS  PubMed  Google Scholar 

  60. 60.

    Schroeder F, Petrescu AD, Huang H. Role of fatty acid binding proteins and long chain fatty acids in modulating nuclear receptors and gene transcription. Lipids. 2008;43:1–17.

    CAS  PubMed  Google Scholar 

  61. 61.

    Sheena V, Hertz R, Nousbeck J, Berman I, Magenheim J, Bar-Tana J. Transcriptional regulation of human microsomal triglyceride transfer protein by hepatocyte nuclear factor-4alpha. J Lipid Res. 2005;46:328–41.

    CAS  PubMed  Google Scholar 

  62. 62.

    Lee MW, Lee M, Oh KJ. Adipose tissue-derived signatures for obesity and type 2 diabetes: adipokines, batokines and microRNAs. J Clin Med. 2019;8:854.

    CAS  PubMed Central  Google Scholar 

  63. 63.

    Li H, Ruan XZ, Powis SH. EPA and DHA reduce LPSinduced inflammation responses in HK-2 cells: evidence for a PPAR-gamma-dependent mechanism. Kidney Int. 2005;67:867–74.

    CAS  PubMed  Google Scholar 

  64. 64.

    Nodari S, Triggiani M, Campia U, Dei Cas L. Omega-3 polyunsaturated fatty acid supplementation: mechanism and current evidence in atrial fibrillation. J. Atr. Fibrillation. 2012;5:718.

    PubMed  PubMed Central  Google Scholar 

  65. 65.

    Den Ruijter HM, Verkerk AO, Coronel R. Incorporated fish oil fatty acids prevent action potential shortening induced by circulating fish oil fatty acids. Front. Physiol. 2010;1:1–5.

    Google Scholar 

  66. 66.

    Mozaffarian D, Wu JH. Omega-3 fatty acids and cardiovascular disease: effects on risk factors, molecular pathways, and clinical events. J Am Coll Cardiol. 2011;58:2047–67.

    CAS  PubMed  Google Scholar 

  67. 67.

    Dangardt F, Osika W, Chen Y. Omega-3 fatty acid supplementation improves vascular function and reduces inflammation in obese adolescents. Atherosclerosis. 2010;212:580–5.

    CAS  PubMed  Google Scholar 

  68. 68.

    Rizza S, Tesauro M, Cardillo C. Fish oil supplementation improves endothelial function in normoglycemic offspring of patients with type 2 diabetes. Atherosclerosis. 2009;206:569–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Goodfellow J, Bellamy MF, Ramsey MW, Jones CJ, Lewis MJ. Dietary supplementation with marine omega-3 fatty acids improve systemic large artery endothelial function in subjects with hypercholesterolemia. J Am Coll Cardiol. 2000;35:265–70.

    CAS  PubMed  Google Scholar 

  70. 70.

    Mori TA, Watts GF, Burke V, Hilme E, Puddey IB, Beilin LJ. Differential effects of eicosapentaenoic acid and docosahexaenoic acid on vascular reactivity of the forearm microcirculation in hyperlipidemic, overweight men. Circulation. 2000;102:1264–9.

    CAS  PubMed  Google Scholar 

  71. 71.

    Schwingshackl L, Hoffmann G. Monounsaturated fatty acids, olive oil and health status: a systematic review and meta-analysis of cohort studies. Lipids Health Dis. 2014;13:154.

    PubMed  PubMed Central  Google Scholar 

  72. 72.

    Guasch-Ferré M, Hu FB, Martínez-González MA, Fitó M, Bulló M, Estruch R. Olive oil intake and risk of cardiovascular disease and mortality in the PREDIMED study. BMC Med. 2014;12:78.

    PubMed  PubMed Central  Google Scholar 

  73. 73.

    Violi F, Loffredo L, Pignatelli P, Angelico F, Bartimoccia S, Nocella C, et al. Extra virgin olive oil use is associated with improved post-prandial blood glucose and LDL cholesterol in healthy subjects. Nutr Diabetes. 2015;5:e172.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Tripoli E, Giammanco M, Tabacchi G, Di Majo D, Giammanco S, Laguardia M. The phenolic compounds of olive oil: structure, biological activity and beneficial effects on human health. Nutr Res Rev. 2005;18:98–112.

    CAS  PubMed  Google Scholar 

  75. 75.

    Jennings A, Welch AA, Fairweather-Tait SJ, Kay C, Minihane A-M. Higher anthocyanin intake is associated with lower arterial stiffness and central blood pressure in women. Am J Clin Nutr. 2012;96:781–8.

    CAS  PubMed  Google Scholar 

  76. 76.

    Du G, Sun L, Zhao R, Du L, Song J, He G, et al. Polyphenols: potential source of drugs for the treatment of ischaemic heart disease. Pharmacol Ther. 2016;162:23–34.

    CAS  PubMed  Google Scholar 

  77. 77.

    Qin Y, Xia M, Ma J, Hao Y, Liu J. Anthocyanin supplementation improves serum LDL-and HDL-cholesterol concentrations associated with the inhibition of cholesteryl ester transfer protein in dyslipidemic subjects. Am J Clin Nutr. 2009;90:485–92.

    CAS  PubMed  Google Scholar 

  78. 78.

    Wallace T, Slavin M, Frankenfeld C. Systematic review of anthocyanins and markers of cardiovascular disease. Nutrients. 2016;8:32.

    PubMed Central  Google Scholar 

  79. 79.

    Rizzi F, Conti C, Dogliotti E, Terranegra A, Salvi E, Braga D, et al. Interaction between polyphenols intake and PON1 gene variants on markers of cardiovascular disease: a nutrigenetic observational study. J Transl Med. 2016;14:186.

    PubMed  PubMed Central  Google Scholar 

  80. 80.

    Kawabata K, Yoshioka Y, Terao J. Role of intestinal microbiota in the bioavailability and physiological functions of dietary polyphenols. Molecules. 2019;24:370.

    PubMed Central  Google Scholar 

  81. 81.

    Kruger M, Davies N, Myburgh K, Lecour S. Proanthocyanidins, anthocyanins and cardiovascular diseases. Food Res Int. 2014;59:42–52.

    Google Scholar 

  82. 82.

    Zhu Y, Ling W, Guo H, Song F, Ye Q, Zou T, et al. Anti-inflammatory effect of purified dietary anthocyanin in adults with hypercholesterolemia: a randomized controlled trial. Nutr Metab Cardiovasc Dis. 2013;23:843–9.

    CAS  PubMed  Google Scholar 

  83. 83.

    Bertoia ML, Rimm EB, Mukamal KJ, Hu FB, Willett WC, Cassidy A. Dietary flavonoid intake and weight maintenance: three prospective cohorts of 124086 US men and women followed for up to 24 years. BMJ. 2016;352:i17.

    PubMed  PubMed Central  Google Scholar 

  84. 84.

    Packer L. Protective role of vitamin E in biological systems. Am J Clin Nutr. 1991;53(4 Suppl):1050S–1055S.

    CAS  PubMed  Google Scholar 

  85. 85.

    Steinberg D. Lewis A. Conner Memorial Lecture. Oxidative modification of LDL and atherogenesis. Circulation. 1997;95:1062–71.

    CAS  PubMed  Google Scholar 

  86. 86.

    Knekt P, Ritz J, Pereira MA, O’Reilly EJ, Augustsson K, Fraser GE, et al. Antioxidant vitamins and coronary heart disease risk: a pooled analysis of 9 cohorts. Am J Clin Nutr. 2004;80:1508–20.

    CAS  PubMed  Google Scholar 

  87. 87.

    Sesso HD, Buring JE, Christen WG, Kurth T, Belanger C, MacFadyen J, et al. Vitamins E and C in the prevention of cardiovascular disease in men: the Physicians’ Health Study II randomized controlled trial. JAMA. 2008;300:2123–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Ellulu MS, Rahmat A, Patimah I, Khaza’ai H, Abed Y. Effect of vitamin C on inflammation and metabolic markers in hypertensive and/or diabetic obese adults: a randomized controlled trial. Drug Des Dev Ther. 2015;9:3405–12.

    CAS  Google Scholar 

  89. 89.

    Long-Gang Zhao, Xiao-Ou Shu, Hong-Lan Li, Wei Zhang, Jing Gao, Sun JW, et al. Dietary antioxidant vitamins intake and mortality: a report from two cohort studies of Chinese adults in Shanghai. J Epidemiol. 2017;27:89–97.

    Google Scholar 

  90. 90.

    Kushi LH, Folsom AR, Prineas RJ, Mink PJ, Wu Y, Bostick RM. Dietary antioxidant vitamins and death from coronary heart disease in postmenopausal women. N Engl J Med. 1996;334:1156–62.

    CAS  PubMed  Google Scholar 

  91. 91.

    Bray GA, Heisel WE, Afshin A, Jensen MD, Dietz WH, Long M, et al. The science of obesity management: an Endocrine Society Scientific Statement. Endocr Rev. 2018;39:79–132.

    PubMed  PubMed Central  Google Scholar 

  92. 92.

    KK Ryan, Woods SC, Seeley RJ. Central nervous system mechanisms linking the consumption of palatable high-fat diets to the defense of greater adiposity. Cell Metab. 2012;15:137–49.

    Google Scholar 

  93. 93.

    Nystoriak MA, Bhatnagar A. Cardiovascular effects and benefits of exercise. Front Cardiovasc Med. 2018;5:135.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Schmitt A, Maurus I, Rossner MJ, Röh A, Lembeck M, von Wilmsdorff M, et al. Effects of aerobic exercise on metabolic syndrome, cardiorespiratory fitness, and symptoms in schizophrenia include decreased mortality. Front Psychiatry. 2018;9:690.

    PubMed  PubMed Central  Google Scholar 

  95. 95.

    Adams V, Linke A. Impact of exercise training on cardiovascular disease and risk. Biochim Biophys Acta Mol Basis Dis. 2019;1865:728–34.

    CAS  PubMed  Google Scholar 

  96. 96.

    Bellettiere J, LaMonte MJ, Evenson KR, Rillamas-Sun E, Kerr J, Lee IM, et al. Sedentary behavior and cardiovascular disease in older women: the Objective Physical Activity and Cardiovascular Health (OPACH) Study. Circulation. 2019;139:1036–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Stamatakis E, Gale J, Bauman A, Ekelund U, Hamer M, Ding D. Sitting time, physical activity, and risk of mortality in adults. J Am Coll Cardiol. 2019;73:2062–72.

    PubMed  Google Scholar 

  98. 98.

    US department of Health and Human services. Dietary Guidliness for Americans, Washington, DC; US Government Printing Office; 2005.

  99. 99.

    Trichopoulou A, Costacou T, Bamia C, Trichopoulos D. Adherence to a mediterranean diet and survival in a Greek Population. N Eng J Med. 2003;348:2599–608.

    Google Scholar 

  100. 100.

    Åkesson A. Go nuts and go extra virgin olive oil! Mediterranean diets reduce blood pressure. Hypertension. 2014;64:26–7.

    PubMed  Google Scholar 

  101. 101.

    Mozaffarian D, Appel LJ, Van Horn L. Components of a cardioprotective diet: New insights. Circulation. 2011;123:2870–91.

    PubMed  PubMed Central  Google Scholar 

  102. 102.

    Sacks FM, Campos H. Dietary therapy in hypertension. N Engl J Med. 2010;362:2102–12.

    CAS  PubMed  Google Scholar 

  103. 103.

    Lichtenstein AH, Appel LJ, Brands M, Carnethon M, Daniels S, Franch HA, et al. American Heart Association Nutrition Committee. Diet and lifestyle recommendations revision 2006: a scientific statement from the American Heart Association Nutrition Committee. Circulation. 2006;114:82–96.

    PubMed  Google Scholar 

  104. 104.

    Graham I, Atar D, Borch-Johnsen K, Boysen G, Burell G, Cifkova R, et al. European Society of Cardiology (ESC) Committee for Practice Guidelines (CPG). European guidelines on cardiovascular disease prevention in clinical practice: executive summary: Fourth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (Constituted by representatives of nine societies and by invited experts). Eur Heart J. 2007;28:2375–414.

    PubMed  Google Scholar 

  105. 105.

    Estruch R, Ros E, Salas-Salvadó J, Covas MI, Corella D, Arós F, et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med. 2013;368:1279–90.

    CAS  PubMed  Google Scholar 

  106. 106.

    Salas-Salvadó J, Bulló M, Babio N, Martínez-González MÁ, Ibarrola-Jurado N, Basora J, et al. PREDIMED Study Investigators. Reduction in the incidence of type 2 diabetes with the Mediterranean diet: results of the PREDIMED-Reus nutrition intervention randomized trial. Diabetes Care. 2011;34:14–9.

    PubMed  Google Scholar 

  107. 107.

    Razquin C, Martinez-Gonzalez MA. A traditional mediterranean diet effectively reduces inflammation and improves cardiovascular health. Nutrients. 2019;11:1842.

    CAS  PubMed Central  Google Scholar 

  108. 108.

    Siervo M, Lara J, Chowdhury S, Ashor A, Oggioni C, Mathers JC. Effects of the Dietary Approach to Stop Hypertension (DASH) diet on cardiovascular risk factors: a systematic review and meta-analysis. Br J Nutr. 2015;113:1–15.

    CAS  PubMed  Google Scholar 

  109. 109.

    Schwingshackl L, Hoffmann G. Diet quality as assessed by the Healthy Eating Index, the Alternate Healthy Eating Index, the Dietary Approaches to Stop Hypertension score, and health outcomes: a systematic review and meta-analysis of cohort studies. J Acad Nutr Diet. 2015;115:780–800. e785.

    PubMed  Google Scholar 

  110. 110.

    Anderson TJ, Gregoire J, Pearson GJ, Barry AR, Couture P, Dawes M, et al. Canadian cardiovascular society guidelines for the management of dyslipidemia for the prevention of cardiovascular disease in the adult. Can J Cardiol. 2016;32:1263–82.

    PubMed  Google Scholar 

  111. 111.

    Larsson SC, Orsini N. Red meat and processed meat consumption and all-cause mortality: a meta-analysis. Am J Epidemiol. 2014;179:282–9.

    PubMed  Google Scholar 

  112. 112.

    Kwok CS, Umar S, Myint PK, Mamas MA, Loke YK. Vegetarian diet, seventh day Adventists and risk of cardiovascular mortality: a systematic review and meta-analysis. Int J Cardiol. 2014;176:680–6.

    PubMed  Google Scholar 

  113. 113.

    Crowe FL, Appleby PN, Travis RC, Key TJ. Risk of hospitalization or death from ischemic heart disease among British vegetarians and nonvegetarians: results from the EPIC-Oxford cohort study. Am J Clin Nutr. 2013;97:597–603.

    CAS  PubMed  Google Scholar 

  114. 114.

    Liu RH. Dietary bioactive compounds and their health implications. J Food Sci. 2013;78:A18–A25.

    CAS  PubMed  Google Scholar 

  115. 115.

    Gilani GS, Wu XC, Cockell KA. Impact of antinutritional factors in food proteins on the digestibility of protein and the bioavailability of amino acids and on protein quality. Br J Nutr. 2012;108:S315e32.

    Google Scholar 

  116. 116.

    Friedman M, Brandon DL. Nutritional and health benefits of soy proteins. J Agric Food Chem. 2001;49:1069e86.

    Google Scholar 

  117. 117.

    Freeman JM, Kossoff EH. Ketosis and the ketogenic diet, 2010: advances in treating epilepsy and other disorders. Adv Pediatr. 2010;57:315–29.

    PubMed  Google Scholar 

  118. 118.

    Caprio M, Infante M, Moriconi E, Armani A, Fabbri A, Mantovani G, et al. On behalf of the Cardiovascular Endocrinology Club of the Italian Society of Endocrinology. Very-low-calorie ketogenic diet (VLCKD) in the management of metabolic diseases: systematic review and consensus statement from the Italian Society of Endocrinology (SIE). J Endocrinol Investig. 2019. https://doi.org/10.1007/s40618-019-01061-2.

  119. 119.

    Stafstrom CE, Rho JM. The ketogenic diet as a treatment paradigm for diverse neurological disorders. Front Pharmacol. 2012;3:59.

    PubMed  PubMed Central  Google Scholar 

  120. 120.

    Matthew JS, William JK, Dawn ML, Neva GA, Ana LG, Timothy PS, Jeff SV. A ketogenic diet favorably affects serum biomarkers for cardiovascular disease in normal-weight men. J Nutr. 2002;132:1879–85.

    Google Scholar 

  121. 121.

    Kirk E, Reeds DN, Finck BN, Mayurranjan SM, Mayurranjan MS, Patterson BW, et al. Dietary fat and carbohydrates differentially alter insulin sensitivity during caloric restriction. Gastroenterology. 2009;136:1552–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. 122.

    Browning JD, Baker JA, Rogers T, Davis J, Satapati S, Burgess SC. Short-term weight loss and hepatic triglyceride reduction: Evidence of a metabolic advantage with dietary carbohydrate restriction. Am J Clin Nutr. 2011;93:1048–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123.

    Sevastianova K, Kotronen A, Gastaldelli A, Perttilä J, Hakkarainen A, Lundbom J, et al. Genetic variation in PNPLA3 (adiponutrin) confers sensitivity to weight loss-induced decrease in liver fat in humans. Am J Clin Nutr. 2011;94:104–11.

    CAS  PubMed  Google Scholar 

  124. 124.

    Shen J, Wong GL-H, Chan HL-Y, Chan RS-M, Chan H-Y, Chu WC-W, et al. PNPLA3 gene polymorphism and response to lifestyle modification in patients with nonalcoholic fatty liver disease. J Gastroenterol Hepatol. 2015;30:139–46.

    CAS  PubMed  Google Scholar 

  125. 125.

    Katanoda K, Kim HS, Matsumura Y. New Quantitative Index for Dietary Diversity (QUANTIDD) and its annual changes in the Japanese. Nutrition. 2006;22:283–7.

    PubMed  Google Scholar 

  126. 126.

    Iso H, Kobayashi M, Ishihara J. Intake of fish and n3 fatty acids and risk of coronary heart disease among Japanese: the Japan Public Health Center-Based (JPHC) Study Cohort I. Circulation. 2006;113:195–202.

    CAS  PubMed  Google Scholar 

  127. 127.

    Takachi R, Inoue M, Ishihara J. Fruit and vegetable intake and risk of total cancer and cardiovascular disease: Japan Public Health Center-Based Prospective Study. Am J Epidemiol. 2006;167:59–70.

    Google Scholar 

  128. 128.

    Adeva MM, Souto G. Diet-induced metabolic acidosis. Clin Nutr. 2011;30:416–21.

    CAS  PubMed  Google Scholar 

  129. 129.

    Akter S, Eguchi M, Kuwahara K, Kochi T, Ito R, Kurotani K, et al. High dietary acid load is associated with insulin resistance: the Furukawa Nutrition and Health Study. Clin Nutr. 2016;35:453–9.

    CAS  PubMed  Google Scholar 

  130. 130.

    Moghadam SK, Bahadoran Z, Mirmiran P, Tohidi M, Azizi F. Association between dietary acid load and insulin resistance: Tehran Lipid and Glucose Study. Prev Nutr Food Sci. 2016;21:104–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. 131.

    Haghighatdoost F, Najafabadi MM, Bellissimo N, Azadbakht L. Association of dietary acid load with cardiovascular disease risk factors in patients with diabetic nephropathy. Nutrition. 2015;31:697–702.

    CAS  PubMed  Google Scholar 

  132. 132.

    Zhang L, Curhan GC, Forman JP. Diet-dependent net acid load and risk of incident hypertension in United States women. Hypertension. 2009;54:751–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. 133.

    Kiefte-de Jong JC, Li Y, Chen M, Curhan GC, Mattei J, Malik VS, et al. Diet-dependent acid load and type 2 diabetes: pooled results from three prospective cohort studies. Diabetologia. 2017;60:270–9.

    CAS  PubMed  Google Scholar 

  134. 134.

    Tada N, Maruyama C, Koba S, Tanaka H, Birou S, Teramoto T, Sasaki J. Japanese dietary lifestyle and cardiovascular disease. J Atheroscler Thromb. 2011;18:723–34.

    PubMed  Google Scholar 

  135. 135.

    Okada E, Nakamura K, Ukawa S, Wakai K, Date C, Iso H, Tamakoshi A. The Japanese food score and risk of all-cause, CVD and cancer mortality: the Japan Collaborative Cohort Study. Br J Nutr. 2018;120:464–71.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Obesity Programs of nutrition, Education, Research and Assessment (OPERA) group members served as collaborators and approved the final version of the paper: Colao Annamaria, Savastano Silvia, Barrea Luigi, Muscogiuri Giovanna, Alviggi Carlo, Angrisani Luigi, Annunziata Giuseppe, Beguinot Francesco, Belfiore Annamaria, Belfiore Antonino, Bellastella Giuseppe, Biondi Bernadette, Bonaduce Domenico, Bordoni Laura, Brasacchio Caterina, Capaldo Brunella, Caprio Massimiliano, Cataldi Mauro, Cignarelli Angelo, Cittadini Antonello, Conforti Alessandro, Cuomo Rosario, De Placido Giuseppe, De Siena Marina, Di Carlo Costantino, Di Luigi Luigi, Di Nisio Andrea, Di Renzo Laura, Di Somma Carolina, Docimo Ludovico, Donini Lorenzo Maria, Federici Massimo, Foresta Carlo, Gabbianelli Rosita, Gambineri Alessandra, Gastaldelli Amalia, Giallauria Francesco, Giardiello Cristiano, Gnessi Lucio, Guida Brunella, Laudisio Daniela, Lenzi Andrea, Macchia Paolo Emidio, Manno Emilio, Marzullo Paolo, Migliaccio Silvia, Muratori Fabrizio, Musella Mario, Nardone Gerardo, Nicasto Vincenzo, Piazza Luigi, Pilone Vincenzo, Pivari Francesca, Pivonello Rosario, Pugliese Gabriella, Riccardi Gabriele, Ritieni Alberto, Salzano Ciro, Sanduzzi Alessandro, Sbraccia Paolo, Sesti Giorgio, Soldati Laura, Taglialatela Maurizio, Trimarco Bruno, Tuccinardi Dario.

Funding

The 2019 OPERA meeting was organized by Panta Rei Srl and sponsored by Novo Nordisk, Therascience, Bruno Pharma, Merck, Savio Pharma Italia Srl, IBSA Institut Biochimique SA, Bioitalia Srl, Cohesion Pharmaceutical, and Specchiasol Srl. Publication of this article as part of a supplement was sponsored by Panta Rei Srl, Naples, Italy. The meeting sponsors and organizer did not have access to the papers and the authors maintained control of the content.

Author information

Affiliations

Authors

Consortia

Contributions

The authors’ responsibilities were as follows: SM, CB, FP, and CS: were responsible for the concept of this paper and drafted the paper; LB, GM, SS, and AC: provided a critical review of the paper. OPERA Group members participated to the revision of the paper. All authors and OPERA Group Members contributed to and agreed on the final version of the paper.

Corresponding author

Correspondence to Silvia Migliaccio.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Migliaccio, S., Brasacchio, C., Pivari, F. et al. What is the best diet for cardiovascular wellness? A comparison of different nutritional models. Int J Obes Supp 10, 50–61 (2020). https://doi.org/10.1038/s41367-020-0018-0

Download citation

Further reading

Search

Quick links