Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nutrigenetics—personalized nutrition in obesity and cardiovascular diseases

Abstract

Epidemiological data support the view that both obesity and cardiovascular diseases (CVD) account for a high proportion of total morbidity and mortality in adults throughout the world. Obesity and CVD have complex interplay mechanisms of genetic and environmental factors, including diet. Nutrition is an environmental factor and it has a predominant and recognizable role in health management and in the prevention of obesity and obesity-related diseases, including CVD. However, there is a marked variation in CVD in patients with obesity and the same dietary pattern. The different genetic polymorphisms could explain this variation, which leads to the emergence of the concept of nutrigenetics. Nutritional genomics or nutrigenetics is the science that studies and characterizes gene variants associated with differential response to specific nutrients and relating this variation to various diseases, such as CVD related to obesity. Thus, the personalized nutrition recommendations, based on the knowledge of an individual’s genetic background, might improve the outcomes of a specific dietary intervention and represent a new dietary approach to improve health, reducing obesity and CVD. Given these premises, it is intuitive to suppose that the elucidation of diet and gene interactions could support more specific and effective dietary interventions in both obesity and CVD prevention through personalized nutrition based on nutrigenetics. This review aims to briefly summarize the role of the most important genes associated with obesity and CVD and to clarify the knowledge about the relation between nutrition and gene expression and the role of the main nutrition-related genes in obesity and CVD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Nutrigenetics-personalized nutrition in obesity and cardiovascular diseases.

Similar content being viewed by others

References

  1. Karczewski J, Sledzinska E, Baturo A, Jonczyk I, Maleszko A, Samborski P, et al. Obesity and inflammation. Eur Cytokine Netw. 2018;29:83–94.

    CAS  PubMed  Google Scholar 

  2. Goodarzi MO. Genetics of obesity: what genetic association studies have taught us about the biology of obesity and its complications. Lancet. 2018;6:223–36.

    CAS  PubMed  Google Scholar 

  3. Ordovas JM, Corella D. Nutritional genomics. Ann Rev Genom Hum Genet. 2004;5:71–118.

    CAS  Google Scholar 

  4. Webb TR, Erdmann J, Stirrups KE, Stitziel NO, Masca NG, Jansen H, et al. Systematic evaluation of pleiotropy identifies 6 further loci associated with coronary artery disease. J Am Coll Cardiol. 2017;69:823–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Vazquez-Vidal I, Desmarchelier C, Jones PJH. Nutrigenetics of blood cholesterol concentrations: towards personalized nutrition. Curr Cardiol Rep. 2019;21:38.

    PubMed  Google Scholar 

  6. El-Sohemy A. Nutrigenetics. Forum Nutr. 2007;60:25–30.

    CAS  PubMed  Google Scholar 

  7. Williams CM, Ordovas JM, Lairon D, Hesketh J, Lietz G, Gibney M, et al. The challenges for molecular nutrition research 1: linking genotype to healthy nutrition. Genes Nutr. 2008;3:41–9.

    PubMed  PubMed Central  Google Scholar 

  8. Gregori D, Foltran F, Verduci E, Ballali S, Franchin L, Ghidina M, et al. A genetic perspective on nutritional profiles: do we still need them? J Nutrigenet Nutrigenomics. 2011;4:25–35.

    CAS  PubMed  Google Scholar 

  9. Elsamanoudy AZ, Mohamed Neamat-Allah MA, Hisham Mohammad FA, Hassanien M, Nada HA. The role of nutrition related genes and nutrigenetics in understanding the pathogenesis of cancer. J Microsc Ultrastruct. 2016;4:115–22.

    PubMed  PubMed Central  Google Scholar 

  10. DeBusk RM, Fogarty CP, Ordovas JM, Kornman KS. Nutritional genomics in practice: where do we begin? J Am Dietetic Association. 2005;105:589–98.

    CAS  Google Scholar 

  11. Elder SJ, Lichtenstein AH, Pittas AG, Roberts SB, Fuss PJ, Greenberg AS, et al. Genetic and environmental influences on factors associated with cardiovascular disease and the metabolic syndrome. J Lipid Res. 2009;50:1917–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ordovas JM, Corella D, Cupples LA, Demissie S, Kelleher A, Coltell O, et al. Polyunsaturated fatty acids modulate the effects of the APOA1 G-A polymorphism on HDL-cholesterol concentrations in a sex-specific manner: the Framingham Study. Am J Clin Nutr. 2002;75:38–46.

    CAS  PubMed  Google Scholar 

  13. Xu M, Zhao J, Zhang Y, Ma X, Dai Q, Zhi H, et al. Apolipoprotein E gene variants and risk of coronary heart disease: a meta-analysis. BioMed Res Int. 2016;2016:3912175.

    PubMed  PubMed Central  Google Scholar 

  14. Tapsell LC, Neale EP, Satija A, Hu FB. Foods, nutrients, and dietary patterns: interconnections and implications for dietary guidelines. Adv Nutr. 2016;7:445–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Celis-Morales C, Livingstone KM, Marsaux CF, Forster H, O’Donovan CB, Woolhead C, et al. Design and baseline characteristics of the Food4Me study: a web-based randomised controlled trial of personalised nutrition in seven European countries. Genes Nutr. 2015;10:450.

    PubMed  Google Scholar 

  16. Fallaize R, Celis-Morales C, Macready AL, Marsaux CF, Forster H, O’Donovan C, et al. The effect of the apolipoprotein E genotype on response to personalized dietary advice intervention: findings from the Food4Me randomized controlled trial. Am J Clin Nutr. 2016;104:827–36.

    CAS  PubMed  Google Scholar 

  17. Corella D, Asensio EM, Coltell O, Sorli JV, Estruch R, Martinez-Gonzalez MA, et al. CLOCK gene variation is associated with incidence of type-2 diabetes and cardiovascular diseases in type-2 diabetic subjects: dietary modulation in the PREDIMED randomized trial. Cardiovasc Diabetol. 2016;15:4.

    PubMed  PubMed Central  Google Scholar 

  18. Ortega-Azorin C, Sorli JV, Estruch R, Asensio EM, Coltell O, Gonzalez JI, et al. Amino acid change in the carbohydrate response element binding protein is associated with lower triglycerides and myocardial infarction incidence depending on level of adherence to the Mediterranean diet in the PREDIMED trial. Circulation. 2014;7:49–58.

    CAS  PubMed  Google Scholar 

  19. Roncero-Ramos I, Rangel-Zuniga OA, Lopez-Moreno J, Alcala-Diaz JF, Perez-Martinez P, Jimenez-Lucena R, et al. Mediterranean diet, glucose homeostasis, and inflammasome genetic variants: The CORDIOPREV Study. Mol Nutr Food Res. 2018;62:e1700960.

    PubMed  Google Scholar 

  20. de Toro-Martin J, Arsenault BJ, Despres JP, Vohl MC. Precision nutrition: a review of personalized nutritional approaches for the prevention and management of metabolic syndrome. Nutrients. 2017;9:913–41

    PubMed Central  Google Scholar 

  21. Koliaki C, Liatis S, Kokkinos A. Obesity and cardiovascular disease: revisiting an old relationship. Metabolism. 2019;92:98–107.

    CAS  PubMed  Google Scholar 

  22. Alpert MA. Obesity cardiomyopathy: pathophysiology and evolution of the clinical syndrome. Am J Med Sci. 2001;321:225–36.

    CAS  PubMed  Google Scholar 

  23. Chakko S, Mayor M, Allison MD, Kessler KM, Materson BJ, Myerburg RJ. Abnormal left ventricular diastolic filling in eccentric left ventricular hypertrophy of obesity. Am J Cardiol. 1991;68:95–8.

    CAS  PubMed  Google Scholar 

  24. Lavie CJ, Milani RV, Ventura HO, Cardenas GA, Mehra MR, Messerli FH. Disparate effects of left ventricular geometry and obesity on mortality in patients with preserved left ventricular ejection fraction. Am J Cardiol. 2007;100:1460–4.

    PubMed  Google Scholar 

  25. Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab. 2004;89:2548–56.

    CAS  PubMed  Google Scholar 

  26. Nakamura K, Fuster JJ, Walsh K. Adipokines: a link between obesity and cardiovascular disease. J Cardiol. 2014;63:250–9.

    PubMed  Google Scholar 

  27. Koh KK, Park SM, Quon MJ. Leptin and cardiovascular disease: response to therapeutic interventions. Circulation. 2008;117:3238–49.

    PubMed  PubMed Central  Google Scholar 

  28. Guglielmi V, Sbraccia P. Epicardial adipose tissue: at the heart of the obesity complications. Acta Diabetol. 2017;54:805–12.

    CAS  PubMed  Google Scholar 

  29. Bleau C, Karelis AD, St-Pierre DH, Lamontagne L. Crosstalk between intestinal microbiota, adipose tissue and skeletal muscle as an early event in systemic low-grade inflammation and the development of obesity and diabetes. Diabetes/Metab Res Rev. 2015;31:545–61.

    CAS  Google Scholar 

  30. Li XS, Obeid S, Klingenberg R, Gencer B, Mach F, Raber L, et al. Gut microbiota-dependent trimethylamine N-oxide in acute coronary syndromes: a prognostic marker for incident cardiovascular events beyond traditional risk factors. Eur Heart J. 2017;38:814–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Randrianarisoa E, Lehn-Stefan A, Wang X, Hoene M, Peter A, Heinzmann SS, et al. Relationship of serum trimethylamine n-oxide (TMAO) levels with early atherosclerosis in humans. Sci Rep. 2016;6:26745.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Haghikia A, Li XS, Liman TG, Bledau N, Schmidt D, Zimmermann F, et al. Gut microbiota-dependent trimethylamine N-oxide predicts risk of cardiovascular events in patients with stroke and is related to proinflammatory monocytes. Arterioscler Thromb Vasc Biol. 2018;38:2225–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Liang Z, Dong Z, Guo M, Shen Z, Yin D, Hu S, et al. Trimethylamine N-oxide as a risk marker for ischemic stroke in patients with atrial fibrillation. J Biochem Mol Toxicol. 2019;33:e22246.

    PubMed  Google Scholar 

  34. Nie J, Xie L, Zhao BX, Li Y, Qiu B, Zhu F, et al. Serum trimethylamine N-oxide concentration is positively associated with first stroke in hypertensive patients. Stroke. 2018;49:2021–8.

    CAS  PubMed  Google Scholar 

  35. Wu C, Li C, Zhao W, Xie N, Yan F, Lian Y, et al. Elevated trimethylamine N-oxide related to ischemic brain lesions after carotid artery stenting. Neurology. 2018;90:e1283–e1290.

    CAS  PubMed  Google Scholar 

  36. Tang WH, Wang Z, Fan Y, Levison B, Hazen JE, Donahue LM, et al. Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: refining the gut hypothesis. J Am Coll Cardiol. 2014;64:1908–14.

    CAS  PubMed  Google Scholar 

  37. Barrea L, Annunziata G, Muscogiuri G, Di Somma C, Laudisio D, Maisto M, et al. Trimethylamine-N-oxide (TMAO) as novel potential biomarker of early predictors of metabolic syndrome. Nutrients. 2018;10:1971–90

    PubMed Central  Google Scholar 

  38. LaRocca TJ, Martens CR, Seals DR. Nutrition and other lifestyle influences on arterial aging. Ageing Res Rev. 2017;39:106–19.

    PubMed  Google Scholar 

  39. Bhatnagar A. Environmental determinants of cardiovascular disease. Circ Res. 2017;121:162–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Masana L, Ros E, Sudano I, Angoulvant D. lifestyle expert working group Is there a role for lifestyle changes in cardiovascular prevention? What, when and how?. Atheroscler Suppl. 2017;26:2–15.

    PubMed  Google Scholar 

  41. Khanji MY, van Waardhuizen CN, Bicalho VVS, Ferket BS, Hunink MGM, Petersen SE. Lifestyle advice and interventions for cardiovascular risk reduction: a systematic review of guidelines. Int J Cardiol. 2018;263:142–51.

    PubMed  Google Scholar 

  42. Torres N, Guevara-Cruz M, Velazquez-Villegas LA, Tovar AR. Nutrition and atherosclerosis. Arch Med Res. 2015;46:408–26.

    CAS  PubMed  Google Scholar 

  43. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, et al. The sequence of the human genome. Science. 2001;291:1304–51.

    CAS  PubMed  Google Scholar 

  44. Bordoni L, Gabbianelli R. Primers on nutrigenetics and nutri(epi)genomics: origins and development of precision nutrition. Biochimie. 2019;160:156–71.

    CAS  PubMed  Google Scholar 

  45. Lloyd-Jones DM, Nam BH, D’Agostino RB Sr., Levy D, Murabito JM, Wang TJ, et al. Parental cardiovascular disease as a risk factor for cardiovascular disease in middle-aged adults: a prospective study of parents and offspring. JAMA. 2004;291:2204–11.

    CAS  PubMed  Google Scholar 

  46. Govindaraju DR, Adrienne Cupples L, Kannel WB, O’Donnell CJ, Atwood LD, D’Agostino RB Sr., et al. Genetics of the Framingham Heart Study population. Adv Genet. 2008;62:33–65.

    PubMed  PubMed Central  Google Scholar 

  47. Larson MG, Atwood LD, Benjamin EJ, Cupples LA, D’Agostino RB Sr., Fox CS, et al. Framingham Heart Study 100K project: genome-wide associations for cardiovascular disease outcomes. BMC Med Genet. 2007;8 Suppl 1:S5.

    PubMed  PubMed Central  Google Scholar 

  48. Consortium CAD, Deloukas P, Kanoni S, Willenborg C, Farrall M, Assimes TL, et al. Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet. 2013;45:25–33.

    Google Scholar 

  49. Borel P, Desmarchelier C, Nowicki M, Bott R. A combination of single-nucleotide polymorphisms is associated with interindividual variability in dietary beta-carotene bioavailability in healthy men. J Nutr. 2015;145:1740–7.

    CAS  PubMed  Google Scholar 

  50. Borel P, Desmarchelier C, Nowicki M, Bott R. Lycopene bioavailability is associated with a combination of genetic variants. Free Radic Biol Med. 2015;83:238–44.

    CAS  PubMed  Google Scholar 

  51. Borel P, Desmarchelier C, Nowicki M, Bott R, Tourniaire F. Can genetic variability in alpha-tocopherol bioavailability explain the heterogeneous response to alpha-tocopherol supplements? Antioxid Redox Signal. 2015;22:669–78.

    CAS  PubMed  Google Scholar 

  52. Desmarchelier C, Martin JC, Planells R, Gastaldi M, Nowicki M, Goncalves A, et al. The postprandial chylomicron triacylglycerol response to dietary fat in healthy male adults is significantly explained by a combination of single nucleotide polymorphisms in genes involved in triacylglycerol metabolism. J Clin Endocrinol Metab. 2014;99:E484–8.

    CAS  PubMed  Google Scholar 

  53. Luft FC, Weinberger MH. Heterogeneous responses to changes in dietary salt intake: the salt-sensitivity paradigm. Am J Clin Nutr. 1997;65 2 Suppl:612S–617S.

    CAS  PubMed  Google Scholar 

  54. Ferguson LR, De Caterina R, Gorman U, Allayee H, Kohlmeier M, Prasad C, et al. Guide and position of the international society of nutrigenetics/nutrigenomics on personalised nutrition: part 1—fields of precision nutrition. J Nutrigenet Nutrigenomics. 2016;9:12–27.

    PubMed  Google Scholar 

  55. Wittwer J, Rubio-Aliaga I, Hoeft B, Bendik I, Weber P, Daniel H. Nutrigenomics in human intervention studies: current status, lessons learned and future perspectives. Mol Nutr Food Res. 2011;55:341–58.

    CAS  PubMed  Google Scholar 

  56. Ross LJ, Barnes KA, Ball LE, Mitchell LJ, Sladdin I, Lee P, et al. Effectiveness of dietetic consultation for lowering blood lipid levels in the management of cardiovascular disease risk: A systematic review and meta-analysis of randomised controlled trials. Nutr Diet. 2019;76:199–210.

    PubMed  PubMed Central  Google Scholar 

  57. Shivappa N, Godos J, Hebert JR, Wirth MD, Piuri G, Speciani AF, et al. Dietary inflammatory index and cardiovascular risk and mortality-a meta-analysis. Nutrients. 2018;10:200–15.

    PubMed Central  Google Scholar 

  58. Ordovas JM, Corella D. Genetic variation and lipid metabolism: modulation by dietary factors. Curr Cardiol Rep. 2005;7:480–6.

    PubMed  Google Scholar 

  59. Chilton FH, Murphy RC, Wilson BA, Sergeant S, Ainsworth H, Seeds MC, et al. Diet-gene interactions and PUFA metabolism: a potential contributor to health disparities and human diseases. Nutrients. 2014;6:1993–2022.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. O’Neill CM, Minihane AM. The impact of fatty acid desaturase genotype on fatty acid status and cardiovascular health in adults. Proc Nutr Soc. 2017;76:64–75.

    PubMed  Google Scholar 

  61. Zheng JS, Chen J, Wang L, Yang H, Fang L, Yu Y, et al. Replication of a gene-diet interaction at CD36, NOS3 and PPARG in response to omega-3 fatty acid supplements on blood lipids: a double-blind randomized controlled trial. EBioMedicine. 2018;31:150–6.

    PubMed  PubMed Central  Google Scholar 

  62. Ferguson JF, Phillips CM, McMonagle J, Perez-Martinez P, Shaw DI, Lovegrove JA, et al. NOS3 gene polymorphisms are associated with risk markers of cardiovascular disease, and interact with omega-3 polyunsaturated fatty acids. Atherosclerosis. 2010;211:539–44.

    CAS  PubMed  Google Scholar 

  63. Armstrong P, Kelley DS, Newman JW, Staggers FE Sr., Hartiala J, Allayee H, et al. Arachidonate 5-lipoxygenase gene variants affect response to fish oil supplementation by healthy African Americans. J Nutr. 2012;142:1417–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Matualatupauw JC, Radonjic M, van de Rest O, de Groot LC, Geleijnse JM, Muller M, et al. Apolipoprotein E genotype status affects habitual human blood mononuclear cell gene expression and its response to fish oil intervention. Mol Nutr Food Res. 2016;60:1649–60.

    CAS  PubMed  Google Scholar 

  65. Vallee Marcotte B, Cormier H, Rudkowska I, Lemieux S, Couture P, Vohl MC. Polymorphisms in FFAR4 (GPR120) gene modulate insulin levels and sensitivity after fish oil supplementation. J Pers Med. 2017;7:15–27.

    PubMed Central  Google Scholar 

  66. Vallee Marcotte B, Guenard F, Lemieux S, Couture P, Rudkowska I, Calder PC, et al. Fine mapping of genome-wide association study signals to identify genetic markers of the plasma triglyceride response to an omega-3 fatty acid supplementation. Am J Clin Nutr. 2019;109:176–85.

    PubMed  PubMed Central  Google Scholar 

  67. Reddy VS, Palika R, Ismail A, Pullakhandam R, Reddy GB. Nutrigenomics: opportunities & challenges for public health nutrition. Indian J Med Res. 2018;148:632–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Selhub J. Folate, vitamin B12 and vitamin B6 and one carbon metabolism. J Nutr Health Aging. 2002;6:39–42.

    CAS  PubMed  Google Scholar 

  69. Ridker PM, Shih J, Cook TJ, Clearfield M, Downs JR, Pradhan AD, et al. Plasma homocysteine concentration, statin therapy, and the risk of first acute coronary events. Circulation. 2002;105:1776–9.

    CAS  PubMed  Google Scholar 

  70. Selhub J. The many facets of hyperhomocysteinemia: studies from the Framingham cohorts. J Nutr. 2006;136 6 Suppl:1726S–30S.

    CAS  PubMed  Google Scholar 

  71. Djuric D, Jakovljevic V, Zivkovic V, Srejovic I. Homocysteine and homocysteine-related compounds: an overview of the roles in the pathology of the cardiovascular and nervous systems. Can J Physiol Pharmacol. 2018;96:991–1003.

    CAS  PubMed  Google Scholar 

  72. Cesari M, Burlina AB, Narkiewicz K, Sartori MT, Sacchetto A, Rossi GP. Are fasting plasma homocyst(e)ine levels heritable? A study of normotensive twins. J Investig Med. 2000;48:351–8.

    CAS  PubMed  Google Scholar 

  73. Vermeulen SH, van der Vleuten GM, de Graaf J, Hermus AR, Blom HJ, Stalenhoef AF, et al. A genome-wide linkage scan for homocysteine levels suggests three regions of interest. J Throm Haemost. 2006;4:1303–7.

    CAS  Google Scholar 

  74. Hazra A, Kraft P, Lazarus R, Chen C, Chanock SJ, Jacques P, et al. Genome-wide significant predictors of metabolites in the one-carbon metabolism pathway. Hum Mol Genet. 2009;18:4677–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Colson NJ, Naug HL, Nikbakht E, Zhang P, McCormack J. The impact of MTHFR 677 C/T genotypes on folate status markers: a meta-analysis of folic acid intervention studies. Eur J Nutr. 2017;56:247–60.

    CAS  PubMed  Google Scholar 

  76. Du B, Tian H, Tian D, Zhang C, Wang W, Wang L, et al. Genetic polymorphisms of key enzymes in folate metabolism affect the efficacy of folate therapy in patients with hyperhomocysteinaemia. Br J Nutr. 2018;119:887–95.

    CAS  PubMed  Google Scholar 

  77. Kheiri B, Abdalla A, Osman M, Ahmed S, Hassan M, Bachuwa G. Vitamin D deficiency and risk of cardiovascular diseases: a narrative review. Clin Hypertens. 2018;24:9.

    PubMed  PubMed Central  Google Scholar 

  78. Pilz S, Tomaschitz A, Drechsler C, Zittermann A, Dekker JM, Marz W. Vitamin D supplementation: a promising approach for the prevention and treatment of strokes. Curr Drug Targets. 2011;12:88–96.

    CAS  PubMed  Google Scholar 

  79. Pereira-Santos M, Costa PR, Assis AM, Santos CA, Santos DB. Obesity and vitamin D deficiency: a systematic review and meta-analysis. Obes Rev. 2015;16:341–9.

    CAS  PubMed  Google Scholar 

  80. Savastano S, Barrea L, Savanelli MC, Nappi F, Di Somma C, Orio F, et al. Low vitamin D status and obesity: role of nutritionist. Rev Endocr Metab Disord. 2017;18:215–25.

    CAS  PubMed  Google Scholar 

  81. Wang TJ, Zhang F, Richards JB, Kestenbaum B, van Meurs JB, Berry D, et al. Common genetic determinants of vitamin D insufficiency: a genome-wide association study. Lancet. 2010;376:180–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Uitterlinden AG, Fang Y, Van Meurs JB, Pols HA, Van Leeuwen JP. Genetics and biology of vitamin D receptor polymorphisms. Gene. 2004;338:143–56.

    CAS  PubMed  Google Scholar 

  83. Al-Daghri NM, Mohammed AK, Al-Attas OS, Ansari MGA, Wani K, Hussain SD, et al. Vitamin D receptor gene polymorphisms modify cardiometabolic response to vitamin D supplementation in T2DM patients. Sci Rep. 2017;7:8280.

    PubMed  PubMed Central  Google Scholar 

  84. Zhang M, Zhao LJ, Zhou Y, Badr R, Watson P, Ye A, et al. SNP rs11185644 of RXRA gene is identified for dose-response variability to vitamin D3 supplementation: a randomized clinical trial. Sci Rep. 2017;7:40593.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Neyestani TR, Djazayery A, Shab-Bidar S, Eshraghian MR, Kalayi A, Shariatzadeh N, et al. Vitamin D receptor Fok-I polymorphism modulates diabetic host response to vitamin D intake: need for a nutrigenetic approach. Diabetes Care. 2013;36:550–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Hu T, Bazzano LA. The low-carbohydrate diet and cardiovascular risk factors: evidence from epidemiologic studies. Nutr Metab Cardiovasc Dis. 2014;24:337–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Gardner CD, Trepanowski JF, Del Gobbo LC, Hauser ME, Rigdon J, Ioannidis JPA, et al. Effect of low-fat vs low-carbohydrate diet on 12-month weight loss in overweight adults and the association with genotype pattern or insulin secretion: The DIETFITS Randomized Clinical Trial. JAMA. 2018;319:667–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Sun D, Heianza Y, Li X, Shang X, Smith SR, Bray GA, et al. Genetic, epigenetic and transcriptional variations at NFATC2IP locus with weight loss in response to diet interventions: The POUNDS Lost Trial. Diabetes Obes Metab. 2018;20:2298–303.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Qi Q, Durst R, Schwarzfuchs D, Leitersdorf E, Shpitzen S, Li Y, et al. CETP genotype and changes in lipid levels in response to weight-loss diet intervention in the POUNDS LOST and DIRECT randomized trials. J Lipid Res. 2015;56:713–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Goni L, Qi L, Cuervo M, Milagro FI, Saris WH, MacDonald IA, et al. Effect of the interaction between diet composition and the PPM1K genetic variant on insulin resistance and beta cell function markers during weight loss: results from the Nutrient Gene Interactions in Human Obesity: implications for dietary guidelines (NUGENOB) randomized trial. Am J Clin Nutr. 2017;106:902–8.

    CAS  PubMed  Google Scholar 

  91. Santos JL, De la Cruz R, Holst C, Grau K, Naranjo C, Maiz A, et al. Allelic variants of melanocortin 3 receptor gene (MC3R) and weight loss in obesity: a randomised trial of hypo-energetic high- versus low-fat diets. PLoS ONE. 2011;6:e19934.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. de Luis DA, Izaola O, Primo D, Aller R, Ortola A, Gomez E, et al. The association of SNP276G>T at adiponectin gene with insulin resistance and circulating adiponectin in response to two different hypocaloric diets. Diabetes Res and Clin Pract. 2018;137:93–99.

    Google Scholar 

  93. Zheng Y, Huang T, Zhang X, Rood J, Bray GA, Sacks FM, et al. Dietary fat modifies the effects of FTO genotype on changes in insulin sensitivity. J Nutr. 2015;145:977–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Huang T, Zheng Y, Hruby A, Williamson DA, Bray GA, Shen Y, et al. Dietary protein modifies the effect of the MC4R genotype on 2-year changes in appetite and food craving: The POUNDS Lost Trial. J Nutr. 2017;147:439–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Huang T, Qi Q, Li Y, Hu FB, Bray GA, Sacks FM, et al. FTO genotype, dietary protein, and change in appetite: the preventing overweight using novel dietary strategies trial. Am J Clin Nutr. 2014;99:1126–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Curti ML, Rogero MM, Baltar VT, Barros CR, Siqueira-Catania A, Ferreira SR. FTO T/A and peroxisome proliferator-activated receptor-gamma Pro12Ala polymorphisms but not ApoA1-75 are associated with better response to lifestyle intervention in Brazilians at high cardiometabolic risk. Metab Syndr Relat Disord. 2013;11:169–76.

    CAS  PubMed  Google Scholar 

  97. de Luis DA, Izaola O, de la Fuente B, Primo D, Aller R. Polymorphism of neuropeptide Y gene rs16147 modifies the response to a hypocaloric diet on cardiovascular risk biomarkers and adipokines. J Hum Nutr Diet. 2017;30:159–65.

    PubMed  Google Scholar 

  98. Garaulet M, Vera B, Bonnet-Rubio G, Gomez-Abellan P, Lee YC, Ordovas JM. Lunch eating predicts weight-loss effectiveness in carriers of the common allele at PERILIPIN1: the ONTIME (Obesity, Nutrigenetics, Timing, Mediterranean) study. Am J Clin Nutr. 2016;104:1160–6.

    CAS  PubMed  Google Scholar 

  99. San-Cristobal R, Navas-Carretero S, Livingstone KM, Celis-Morales C, Macready AL, Fallaize R, et al. Mediterranean diet adherence and genetic background roles within a web-based nutritional intervention: The Food4Me Study. Nutrients. 2017;9:1107–24.

    PubMed Central  Google Scholar 

  100. Di Renzo L, Cioccoloni G, Falco S, Abenavoli L, Moia A, Sinibaldi Salimei P, et al. Influence of FTO rs9939609 and Mediterranean diet on body composition and weight loss: a randomized clinical trial. J Transl Med. 2018;16:308.

    PubMed  PubMed Central  Google Scholar 

  101. Dinu M, Pagliai G, Casini A, Sofi F. Mediterranean diet and multiple health outcomes: an umbrella review of meta-analyses of observational studies and randomised trials. Eur J Clin Nutr. 2018;72:30–43.

    CAS  PubMed  Google Scholar 

  102. Widmer RJ, Flammer AJ, Lerman LO, Lerman A. The Mediterranean diet, its components, and cardiovascular disease. Am J Med. 2015;128:229–38.

    PubMed  Google Scholar 

  103. Mayneris-Perxachs J, Sala-Vila A, Chisaguano M, Castellote AI, Estruch R, Covas MI, et al. Effects of 1-year intervention with a Mediterranean diet on plasma fatty acid composition and metabolic syndrome in a population at high cardiovascular risk. PLoS ONE. 2014;9:e85202.

    PubMed  PubMed Central  Google Scholar 

  104. Esposito K, Kastorini CM, Panagiotakos DB, Giugliano D. Mediterranean diet and weight loss: meta-analysis of randomized controlled trials. Metab Syndr Relat Disord. 2011;9:1–12.

    PubMed  Google Scholar 

  105. Bendall CL, Mayr HL, Opie RS, Bes-Rastrollo M, Itsiopoulos C, Thomas CJ. Central obesity and the Mediterranean diet: a systematic review of intervention trials. Crit Rev Food Sci Nutr. 2018;58:3070–84.

    CAS  PubMed  Google Scholar 

  106. Garcia-Calzon S, Martinez-Gonzalez MA, Razquin C, Corella D, Salas-Salvado J, Martinez JA, et al. Pro12Ala polymorphism of the PPARgamma2 gene interacts with a mediterranean diet to prevent telomere shortening in the PREDIMED-NAVARRA randomized trial. Circulation. 2015;8:91–9.

    CAS  PubMed  Google Scholar 

  107. Ortega-Azorin C, Sorli JV, Asensio EM, Coltell O, Martinez-Gonzalez MA, Salas-Salvado J, et al. Associations of the FTO rs9939609 and the MC4R rs17782313 polymorphisms with type 2 diabetes are modulated by diet, being higher when adherence to the Mediterranean diet pattern is low. Cardiovasc Diabetol. 2012;11:137.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Hussain T, Tan B, Yin Y, Blachier F, Tossou MC, Rahu N. Oxidative stress and inflammation: what polyphenols can do for us? Oxid Med Cell Longev. 2016;2016:7432797.

    PubMed  PubMed Central  Google Scholar 

  109. Kowalska K, Socha E, Milnerowicz H. Review: the role of paraoxonase in cardiovascular diseases. Ann Clin Lab Sci. 2015;45:226–33.

    CAS  PubMed  Google Scholar 

  110. Rizzi F, Conti C, Dogliotti E, Terranegra A, Salvi E, Braga D, et al. Interaction between polyphenols intake and PON1 gene variants on markers of cardiovascular disease: a nutrigenetic observational study. J Transl Med. 2016;14:186.

    PubMed  PubMed Central  Google Scholar 

  111. Annunziata G, Maisto M, Schisano C, Ciampaglia R, Narciso V, Hassan STS, et al. Effect of grape pomace polyphenols with or without pectin on TMAO serum levels assessed by LC/MS-based assay: a preliminary clinical study on overweight/obese subjects. Front Pharmacol. 2019;10:575.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Annunziata G, Maisto M, Schisano C, Ciampaglia R, Narciso V, Tenore GC, et al. Effects of grape pomace polyphenolic extract (Taurisolo((R) in reducing TMAO serum levels in humans: preliminary results from a randomized, placebo-controlled, cross-over study. Nutrients. 2019;11:139–50.

    CAS  PubMed Central  Google Scholar 

  113. Shunmoogam N, Naidoo P, Chilton R. Paraoxonase (PON)-1: a brief overview on genetics, structure, polymorphisms and clinical relevance. Vasc Health Risk Manag. 2018;14:137–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Barrea L, Muscogiuri G, Di Somma C, Annunziata G, Megna M, Falco A, et al. Coffee consumption, metabolic syndrome and clinical severity of psoriasis: good or bad stuff? Arch Toxicol. 2018;92:1831–45.

    CAS  PubMed  Google Scholar 

  115. Renda G, De Caterina R. Coffee and hypertension: a focus on contrasting acute and chronic effects and nutrigenetics. In: Preedy VR, editor. Coffee in health and disease prevention. Academic Press; 2015. p. 395–402. https://doi.org/10.1016/C2012-0-06959-1.

  116. Palatini P, Ceolotto G, Ragazzo F, Dorigatti F, Saladini F, Papparella I, et al. CYP1A2 genotype modifies the association between coffee intake and the risk of hypertension. J Hypertens. 2009;27:1594–601.

    CAS  PubMed  Google Scholar 

  117. Mesas AE, Leon-Munoz LM, Rodriguez-Artalejo F, Lopez-Garcia E. The effect of coffee on blood pressure and cardiovascular disease in hypertensive individuals: a systematic review and meta-analysis. Am J Clin Nutr. 2011;94:1113–26.

    CAS  PubMed  Google Scholar 

  118. Simopoulos AP. Nutrigenetics/nutrigenomics. Ann Rev Public Health. 2010;31:53–68.

    Google Scholar 

  119. Fenech M, El-Sohemy A, Cahill L, Ferguson LR, French TA, Tai ES, et al. Nutrigenetics and nutrigenomics: viewpoints on the current status and applications in nutrition research and practice. J Nutrigenet Nutrigenomics. 2011;4:69–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Juma S, Imrhan V, Vijayagopal P, Prasad C. Prescribing personalized nutrition for cardiovascular health: are we ready? J Nutrigenet Nutrigenomics. 2014;7:153–60.

    CAS  PubMed  Google Scholar 

  121. Bordoni L, Marchegiani F, Piangerelli M, Napolioni V, Gabbianelli R. Obesity-related genetic polymorphisms and adiposity indices in a young Italian population. IUBMB Life. 2017;69:98–105.

    CAS  PubMed  Google Scholar 

  122. Corella D, Coltell O, Mattingley G, Sorli JV, Ordovas JM. Utilizing nutritional genomics to tailor diets for the prevention of cardiovascular disease: a guide for upcoming studies and implementations. Expert Rev Mol Diagn. 2017;17:495–513.

    CAS  PubMed  Google Scholar 

  123. Grimaldi KA, van Ommen B, Ordovas JM, Parnell LD, Mathers JC, Bendik I, et al. Proposed guidelines to evaluate scientific validity and evidence for genotype-based dietary advice. Genes Nutr. 2017;12:35.

    PubMed  PubMed Central  Google Scholar 

  124. Arkadianos I, Valdes AM, Marinos E, Florou A, Gill RD, Grimaldi KA. Improved weight management using genetic information to personalize a calorie controlled diet. Nutr J. 2007;6:29.

    PubMed  PubMed Central  Google Scholar 

  125. Li SX, Ye Z, Whelan K, Truby H. The effect of communicating the genetic risk of cardiometabolic disorders on motivation and actual engagement in preventative lifestyle modification and clinical outcome: a systematic review and meta-analysis of randomised controlled trials. Br J Nutr. 2016;116:924–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Dogan MV, Grumbach IM, Michaelson JJ, Philibert RA. Integrated genetic and epigenetic prediction of coronary heart disease in the Framingham Heart Study. PLoS ONE. 2018;13:e0190549.

    PubMed  PubMed Central  Google Scholar 

  127. Irvin MR, Zhi D, Aslibekyan S, Claas SA, Absher DM, Ordovas JM, et al. Genomics of post-prandial lipidomic phenotypes in the Genetics of Lipid lowering Drugs and Diet Network (GOLDN) study. PLoS ONE. 2014;9:e99509.

    PubMed  PubMed Central  Google Scholar 

  128. Lai CQ, Smith CE, Parnell LD, Lee YC, Corella D, Hopkins P, et al. Epigenomics and metabolomics reveal the mechanism of the APOA2-saturated fat intake interaction affecting obesity. Am J Clin Nutr. 2018;108:188–200.

    PubMed  PubMed Central  Google Scholar 

  129. Perfilyev A, Dahlman I, Gillberg L, Rosqvist F, Iggman D, Volkov P, et al. Impact of polyunsaturated and saturated fat overfeeding on the DNA-methylation pattern in human adipose tissue: a randomized controlled trial. Am J Clin Nutr. 2017;105:991–1000.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Obesity Programs of nutrition, Education, Research and Assessment (OPERA) group members served as collaborators and approved the final version of the manuscript: Colao Annamaria, Savastano Silvia, Barrea Luigi, Muscogiuri Giovanna, Alviggi Carlo, Angrisani Luigi, Annunziata Giuseppe, Beguinot Francesco, Belfiore Annamaria, Belfiore Antonino, Bellastella Giuseppe, Biondi Bernadette, Bonaduce Domenico, Bordoni Laura, Brasacchio Caterina, Capaldo Brunella, Caprio Massimiliano, Cataldi Mauro, Cignarelli Angelo, Cittadini Antonello, Conforti Alessandro, Cuomo Rosario, De Placido Giuseppe, De Siena Marina, Di Carlo Costantino, Di Luigi Luigi, Di Nisio Andrea, Di Renzo Laura, Di Somma Carolina, Docimo Ludovico, Donini Lorenzo Maria, Federici Massimo, Foresta Carlo, Gabbianelli Rosita, Gambineri Alessandra, Gastaldelli Amalia, Giallauria Francesco, Giardiello Cristiano, Gnessi Lucio, Guida Brunella, Laudisio Daniela, Lenzi Andrea, Macchia Paolo Emidio, Manno Emilio, Marzullo Paolo, Migliaccio Silvia, Muratori Fabrizio, Musella Mario, Nardone Gerardo, Nicasto Vincenzo, Piazza Luigi, Pilone Vincenzo, Pivari Francesca, Pivonello Rosario, Pugliese Gabriella, Riccardi Gabriele, Ritieni Alberto, Salzano Ciro, Sanduzzi Alessandro, Sbraccia Paolo, Sesti Giorgio, Soldati Laura, Taglialatela Maurizio, Trimarco Bruno, Tuccinardi Dario.

Funding

The 2019 OPERA meeting was organized by Panta Rei Srl and sponsored by Novo Nordisk, Therascience, Bruno Pharma, Merck, Savio Pharma Italia Srl, IBSA Institut Biochimique SA, Bioitalia Srl, Cohesion Pharmaceutical, and Specchiasol Srl. Publication of this article as part of a supplement was sponsored by Panta Rei Srl, Naples, Italy. The meeting sponsors and organizer did not have access to the manuscripts and the authors maintained control of the content.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

The authors’ responsibilities were as follows: LB, GA, LB, and SS were responsible for the concept of this paper and drafted the manuscript; GM, AC, and SS provided a critical review of the paper. LB, GA, and LB are equally contributed to this work. OPERA Group members participated to the revision of the manuscript. All authors and OPERA Group Members contributed to and agreed on the final version of the manuscript.

Corresponding author

Correspondence to Luigi Barrea.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barrea, L., Annunziata, G., Bordoni, L. et al. Nutrigenetics—personalized nutrition in obesity and cardiovascular diseases. Int J Obes Supp 10, 1–13 (2020). https://doi.org/10.1038/s41367-020-0014-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41367-020-0014-4

This article is cited by

Search

Quick links