Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pediatrics

Sex-specific differences in ectopic fat and metabolic characteristics of paediatric nonalcoholic fatty liver disease

Abstract

Background/Objectives

Sex-specific differences in obesity-related metabolic characteristics of non-alcoholic fatty liver disease (NAFLD) have rarely been explored, particularly in children with biopsy-verified NAFLD. The influence of sex hormones on ectopic fat disposition may cause inter-sex differences in various metabolic factors. This study aimed to assess the sex-based differences in ectopic fat and metabolic characteristics in children with NAFLD.

Subject/Methods

We enrolled 63 children with biopsy-verified NAFLD (48 boys; mean age, 12.9 ± 3.2 years; mean body mass index z-score [BMI-z], 2.49 ± 1.21). Ectopic fat in the liver and pancreas was quantified based on magnetic resonance imaging within 2 days of the liver biopsy. Laboratory tests, body composition, blood pressure, and anthropometric measurements were also assessed.

Results

Sex-based differences were neither observed in age, BMI-z, or total body fat percentage nor in the proportions of obesity, abdominal obesity, diabetes, dyslipidaemia, hypertension, or metabolic syndrome. Furthermore, liver enzyme levels, lipid profiles, and pancreatic fat did not differ between the sexes. However, boys had significantly higher fasting insulin (median 133.2 vs. 97.8 pmol/L; p = 0.039), fasting plasma glucose (median 5.30 vs. 4.83 mmol/L; p = 0.013), homeostasis model assessment of insulin resistance (median 5.4 vs. 3.6; p = 0.025), serum uric acid (404.1 ± 101.2 vs. 322.4 ± 87.1 μmol/L; p = 0.009), and liver fat (median 26.3% vs. 16.3%; p = 0.014).

Conclusions

Male-predominant hepatic steatosis and insulin resistance caused by sex-specific ectopic fat accumulation may contribute to higher uric acid levels in boys than in girls with NAFLD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Graphical presentation of significantly higher metabolic parameters in boys versus girls with nonalcoholic fatty liver disease.
Fig. 2: Graphical presentation of significantly different metabolic parameters between boys and girls with nonalcoholic fatty liver disease according to liver histologic steatosis grade.

Similar content being viewed by others

Data availability

The corresponding author (HRY) will review data availability on reasonable request.

References

  1. Vos MB, Abrams SH, Barlow SE, Caprio S, Daniels SR, Kohli R, et al. NASPGHAN clinical practice guideline for the diagnosis and treatment of nonalcoholic fatty liver disease in children: recommendations from the Expert Committee on NAFLD (ECON) and the North American Society of Pediatric Gastroenterology, Hepatology and Nutrition (NASPGHAN). J Pediatr Gastroenterol Nutr. 2017;64:319–34.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sanyal AJ. Past, present and future perspectives in nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol. 2019;16:377–86.

    Article  PubMed  Google Scholar 

  3. Moran-Costoya A, Proenza AM, Gianotti M, Llado I, Valle A. Sex differences in nonalcoholic fatty liver disease: estrogen influence on the liver-adipose tissue crosstalk. Antioxid Redox Signal. 2021;35:753–74.

    Article  CAS  PubMed  Google Scholar 

  4. Anderson EL, Howe LD, Jones HE, Higgins JP, Lawlor DA, Fraser A. The prevalence of non-alcoholic fatty liver disease in children and adolescents: a systematic review and meta-analysis. PLoS ONE. 2015;10:e0140908.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lee EH, Kim JY, Yang HR. Ectopic pancreatic fat as a risk factor for hypertension in children and adolescents with nonalcoholic fatty liver disease. J Clin Hypertens. 2021;23:1506–15.

    Article  CAS  Google Scholar 

  6. Lonardo A, Nascimbeni F, Ballestri S, Fairweather D, Win S, Than TA, et al. Sex differences in nonalcoholic fatty liver disease: state of the art and identification of research gaps. Hepatology. 2019;70:1457–69.

    Article  CAS  PubMed  Google Scholar 

  7. Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M, et al. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology. 2018;67:328–57.

    Article  PubMed  Google Scholar 

  8. Perng W, Francis EC, Smith HA, Carey J, Wang D, Kechris KM, et al. Sex-specific metabolite biomarkers of NAFLD in youth: a prospective study in the EPOCH cohort. J Clin Endocrinol Metab. 2020;105:e3437–e3450.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lee EH, Kim JY, Yang HR. Association between ectopic pancreatic and hepatic fat and metabolic risk factors in children with non-alcoholic fatty liver disease. Pediatr Obes. 2021;16:e12793.

    Article  PubMed  Google Scholar 

  10. Lee EH, Kim JY, Yang HR. Relationship between histological features of non-alcoholic fatty liver disease and ectopic fat on magnetic resonance imaging in children and adolescents. Front Pediatr. 2021;9:685795.

    Article  PubMed  PubMed Central  Google Scholar 

  11. World Medical Association World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013;310:2191–4.

    Article  Google Scholar 

  12. Centers for Disease Control and Prevention. NHANES Anthropometry Procedures Manual 2021. May 2021. p. 3-6–3-19. https://wwwn.cdc.gov/nchs/data/nhanes/2021-2/manuals/2021-Anthropometry-Procedures-Manual-508.pdf.

  13. Kim JH, Yun S, Hwang SS, Shim JO, Chae HW, Lee YJ, et al. The 2017 Korean National Growth Charts for children and adolescents: development, improvement, and prospects. Korean J Pediatr. 2018;61:135–49.

    Article  PubMed  PubMed Central  Google Scholar 

  14. National Institute of Health. 2007 Korean National Growth Charts. (in Korean). http://www.nih.go.kr/board/board.es?mid=a40801000000&bid=0050&act=view&list_no=1235. Accessed 24 Oct 2022.

  15. Flynn JT, Kaelber DC, Baker-Smith CM, Blowey D, Carroll AE, Daniels SR, et al. Clinical practice guideline for screening and management of high blood pressure in children and adolescents. Pediatrics. 2017;140:e20171904.

    Article  PubMed  Google Scholar 

  16. Arellano-Ruiz P, Garcia-Hermoso A, Cavero-Redondo I, Pozuelo-Carrascosa D, Martinez-Vizcaino V, Solera-Martinez M. Homeostasis model assessment cut-off points related to metabolic syndrome in children and adolescents: a systematic review and meta-analysis. Eur J Pediatr. 2019;178:1813–22.

    Article  PubMed  Google Scholar 

  17. American Diabetes Association Diagnosis and classification of diabetes mellitus. Diabetes Care. 2013;36:S67–74.

    Article  Google Scholar 

  18. Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents; National Heart, Lung, and Blood Institute. Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: summary report. Pediatrics. 2011;128:S213–56.

  19. Grundy SM, Brewer HB, Jr, Cleeman JI, Smith SC, Jr, Lenfant C., American Heart Association; National Heart, Lung, and Blood Institute. Definition of metabolic syndrome: Report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation. 2004;109:433–8.

    Article  PubMed  Google Scholar 

  20. Lo SF. Chapter 748 Reference intervals for laboratory tests and procedures. In: Kliegman R, Stanton B, St Geme JW, Schor NF, Behrman RE, Nelson WE (eds). Nelson Textbook of Pediatrics. 21st ed. Elsevier Inc., Philadelphia, PA, 2019. p. e13.

  21. Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41:1313–21.

    Article  PubMed  Google Scholar 

  22. Takahashi Y, Fukusato T. Histopathology of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J Gastroenterol. 2014;20:15539–48.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Leow WQ, Chan AW, Mednoza PGL, Lo R, Yap K, Kim H. Non-alcoholic fatty liver disease: the pathologist’s perspective. Clin Mol Hepatol. 2023;29:S302–S318. (Suppl)

    Article  PubMed  Google Scholar 

  24. Kleiner DE, Makhlouf HR. Histology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis in adults and children. Clin Liver Dis. 2016;20:293–312.

    Article  PubMed  Google Scholar 

  25. Denzer C, Thiere D, Muche R, Koenig W, Mayer H, Kratzer W, et al. Gender-specific prevalences of fatty liver in obese children and adolescents: roles of body fat distribution, sex steroids, and insulin resistance. J Clin Endocrinol Metab. 2009;94:3872–81.

    Article  CAS  PubMed  Google Scholar 

  26. Lonardo A, Suzuki A. Sexual dimorphism of NAFLD in adults. Focus on clinical aspects and implications for practice and translational research. J Clin Med. 2020;9:1278.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhang X, Mou Y, Aribas E, Amiri M, Nano J, Bramer WM, et al. Associations of sex steroids and sex hormone-binding globulin with non-alcoholic fatty liver disease: a population-based study and meta-analysis. Genes. 2022;13:966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jaruvongvanich V, Sanguankeo A, Riangwiwat T, Upala S. Testosterone, sex hormone-binding globulin and nonalcoholic fatty liver disease: a systematic review and meta-analysis. Ann Hepatol. 2017;16:382–94.

    Article  CAS  PubMed  Google Scholar 

  29. Yang JD, Abdelmalek MF, Guy CD, Gill RM, Lavine JE, Yates K, et al. Patient sex, reproductive status, and synthetic hormone use associate with histologic severity of nonalcoholic steatohepatitis. Clin Gastroenterol Hepatol. 2017;15:127–31.e2.

    Article  CAS  PubMed  Google Scholar 

  30. Klair JS, Yang JD, Abdelmalek MF, Guy CD, Gill RM, Yates K, et al. A longer duration of estrogen deficiency increases fibrosis risk among postmenopausal women with nonalcoholic fatty liver disease. Hepatology. 2016;64:85–91.

    Article  CAS  PubMed  Google Scholar 

  31. Mueller NT, Liu T, Mitchel EB, Yates KP, Suzuki A, Behling C, et al. Sex hormone relations to histologic severity of pediatric nonalcoholic fatty liver disease. J Clin Endocrinol Metab. 2020;105:3496–504.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kur P, Kolasa-Wolosiuk A, Misiakiewicz-Has K, Wiszniewska B. Sex hormone-dependent physiology and diseases of liver. Int J Environ Res Public Health. 2020;17:2620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yuan H, Yu C, Li X, Sun L, Zhu X, Zhao C, et al. Serum uric acid levels and risk of metabolic syndrome: a dose-response meta-analysis of prospective studies. J Clin Endocrinol Metab. 2015;100:4198–207.

    Article  CAS  PubMed  Google Scholar 

  34. Hwang IC, Suh SY, Suh AR, Ahn HY. The relationship between normal serum uric acid and nonalcoholic fatty liver disease. J Korean Med Sci. 2011;26:386–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ruggiero C, Cherubini A, Ble A, Bos AJ, Maggio M, Dixit VD, et al. Uric acid and inflammatory markers. Eur Heart J. 2006;27:1174–81.

    Article  CAS  PubMed  Google Scholar 

  36. Liu CQ, He CM, Chen N, Wang D, Shi X, Liu Y, et al. Serum uric acid is independently and linearly associated with risk of nonalcoholic fatty liver disease in obese Chinese adults. Sci Rep. 2016;6:38605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Khosla UM, Zharikov S, Finch JL, Nakagawa T, Roncal C, Mu W, et al. Hyperuricemia induces endothelial dysfunction. Kidney Int. 2005;67:1739–42.

    Article  PubMed  Google Scholar 

  38. Kodama S, Saito K, Yachi Y, Asumi M, Sugawara A, Totsuka K, et al. Association between serum uric acid and development of type 2 diabetes. Diabetes Care. 2009;32:1737–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chou P, Lin KC, Lin HY, Tsai ST. Gender differences in the relationships of serum uric acid with fasting serum insulin and plasma glucose in patients without diabetes. J Rheumatol. 2001;28:571–6.

    CAS  PubMed  Google Scholar 

  40. Zhou Y, Wei F, Fan Y. High serum uric acid and risk of nonalcoholic fatty liver disease: a systematic review and meta-analysis. Clin Biochem. 2016;49:636–42.

    Article  CAS  PubMed  Google Scholar 

  41. Jaruvongvanich V, Ahuja W, Wirunsawanya K, Wijarnpreecha K, Ungprasert P. Hyperuricemia is associated with nonalcoholic fatty liver disease activity score in patients with nonalcoholic fatty liver disease: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol. 2017;29:1031–5.

    Article  CAS  PubMed  Google Scholar 

  42. Peng L, Wu S, Zhou N, Zhu S, Liu Q, Li X. Clinical characteristics and risk factors of nonalcoholic fatty liver disease in children with obesity. BMC Pediatr. 2021;21:122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vos MB, Colvin R, Belt P, Molleston JP, Murray KF, Rosenthal P, et al. Correlation of vitamin E, uric acid, and diet composition with histologic features of pediatric NAFLD. J Pediatr Gastroenterol Nutr. 2012;54:90–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. DiStefano JK, Shaibi GQ. The relationship between excessive dietary fructose consumption and paediatric fatty liver disease. Pediatr Obes. 2021;16:e12759.

    Article  PubMed  Google Scholar 

  45. Hak AE, Choi HK. Menopause, postmenopausal hormone use and serum uric acid levels in US women-the third National Health and Nutrition Examination Survey. Arthritis Res Ther. 2008;10:R116.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Yu XL, Shu L, Shen XM, Zhang XY, Zheng PF. Gender difference on the relationship between hyperuricemia and nonalcoholic fatty liver disease among Chinese: an observational study. Medicine. 2017;96:e8164.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Fan N, Zhang L, Xia Z, Peng L, Wang Y, Peng Y. Sex-specific association between serum uric acid and nonalcoholic fatty liver disease in type 2 diabetic patients. J Diabetes Res. 2016;2016:3805372.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Gong S, Song J, Wang L, Zhang S, Wang Y. Hyperuricemia and risk of nonalcoholic fatty liver disease: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol. 2016;28:132–8.

    Article  CAS  PubMed  Google Scholar 

  49. Moon SS. Relationship between serum uric acid level and nonalcoholic fatty liver disease in pre- and postmenopausal women. Ann Nutr Metab. 2013;62:158–63.

    Article  CAS  PubMed  Google Scholar 

  50. Gu J, Liu S, Du S, Zhang Q, Xiao J, Dong Q, et al. Diagnostic value of MRI-PDFF for hepatic steatosis in patients with non-alcoholic fatty liver disease: a meta-analysis. Eur Radiol. 2019;29:3564–73.

    Article  PubMed  Google Scholar 

  51. Ratziu V, Charlotte F, Heurtier A, Gombert S, Giral P, Bruckert E, et al. Sampling variability of liver biopsy in nonalcoholic fatty liver disease. Gastroenterology. 2005;128:1898–906.

    Article  PubMed  Google Scholar 

  52. Noureddin M, Lam J, Peterson MR, Middleton M, Hamilton G, Le TA, et al. Utility of magnetic resonance imaging versus histology for quantifying changes in liver fat in nonalcoholic fatty liver disease trials. Hepatology. 2013;58:1930–40.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The present study received the 2019 Seokcheon Research Award from the Korean Pediatric Society. This study was assisted by the Division of Statistics in Medical Research Collaborating Center at Seoul National University Bundang Hospital.

Funding

This study was supported by the 2019 Research grant of the Korean Pediatric Society (Seokcheon Research Award).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualisation: HRY, EHL, Data curation: EHL, JYK, Formal analysis: EHL, HRY, Methodology: HRY, JYK, Investigation: EHL, JYK, Supervision: HRY, Writing-manuscript: EHL, Reviewing & correcting-manuscript: HRY, EHL.

Corresponding author

Correspondence to Hye Ran Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, E.H., Kim, J.Y. & Yang, H.R. Sex-specific differences in ectopic fat and metabolic characteristics of paediatric nonalcoholic fatty liver disease. Int J Obes 48, 486–494 (2024). https://doi.org/10.1038/s41366-023-01439-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-023-01439-6

Search

Quick links