Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Animal Models

BMAL1 deletion protects against obesity and non-alcoholic fatty liver disease induced by a high-fat diet

Abstract

Objectives

Obesity and non-alcoholic fatty liver disease (NAFLD) are major health concerns. The circadian rhythm is an autonomous and intrinsic timekeeping system closely associated with energy metabolism and obesity. Thus, this study explored the role of brain and muscle aryl hydrocarbon receptor nuclear translocator-like1 (BMAL1), a circadian clock regulator, in the development of obesity and NAFLD.

Methods

We generated BMAL1 knockout (BMAL1 KO) mice to imitate circadian rhythm disruption. The study comprised three groups from the same litter: BMAL1 KO mice fed a high-fat diet (to establish obesity and NAFLD phenotypes), wild-type mice fed normal chow, and wild-type mice fed a high-fat diet. The metabolic and NAFLD phenotypes were assessed via physiological measurements and histological examinations. Quantitative polymerase chain reaction and western blotting were used to identify and validate changes in the signaling pathways responsible for the altered NAFLD phenotypes in the wild-type and BMAL1 KO mice.

Results

BMAL1 depletion protected against obesity and metabolic disorders induced by a high-fat diet. BMAL1 depletion also prevented hepatic steatosis and inhibited cluster of differentiation 36 and peroxisome proliferator-activated receptor gamma (i.e., PPARĪ³) expression.

Conclusions

BMAL1 plays an important role in the development of obesity and NAFLD and, thus, is a potential therapeutic target for these conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Body weights and glucose metabolism biomarker levels in wild type (WT) and brain and muscle aryl hydrocarbon receptor nuclear translocator-like1 (BMAL1) global knockout (BMAL1 KO) mice after 20 weeks of normal chow (NC) or a high-fat diet (HFD).
Fig. 2: Lipid metabolism phenotypes in wild-type (WT) and brain and muscle aryl hydrocarbon receptor nuclear translocator-like1 (BMAL1) global knockout (BMAL1 KO) mice fed normal chow (NC) or a high-fat diet (HFD).
Fig. 3: Hepatic lipid metabolism phenotype in wild-type (WT) and brain and muscle aryl hydrocarbon receptor nuclear translocator-like1 (BMAL1) global knockout (BMAL1 KO) mice fed normal chow (NC) or a high-fat diet (HFD).
Fig. 4: Liver lipid metabolism-related and nuclear receptor gene expression levels in wild-type (WT) and brain and muscle aryl hydrocarbon receptor nuclear translocator-like1 (BMAL1) global knockout (BMAL1 KO) mice fed normal chow (NC) or a high-fat diet (HFD).

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. BlĆ¼her M. Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol. 2019;15:288ā€“98.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  2. Abarca-GĆ³mez L, Abdeen ZA, Hamid ZA, Abu-Rmeileh NM, Acosta-Cazares B, Acuin C, et al. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet. 2017;390:2627ā€“42.

    ArticleĀ  Google ScholarĀ 

  3. Riazi K, Azhari H, Charette JH, Underwood FE, King JA, Afshar EE, et al. The prevalence and incidence of NAFLD worldwide: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2022;7:851ā€“61.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  4. Paik JM, Golabi P, Younossi Y, Mishra A, Younossi ZM. Changes in the global burden of chronic liver diseases from 2012 to 2017: the growing impact of NAFLD. Hepatology. 2020;72:1605ā€“16.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  5. Pafili K, Roden M. Nonalcoholic fatty liver disease (NAFLD) from pathogenesis to treatment concepts in humans. Mol Metab. 2021;50:101122.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  6. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64:73ā€“84.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  7. Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. Mechanisms of NAFLD development and therapeutic strategies. Nat Med. 2018;24:908ā€“22.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  8. Sanyal AJ. Past, present and future perspectives in nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol. 2019;16:377ā€“86.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  9. Gnocchi D, Custodero C, SabbĆ  C, Mazzocca A. Circadian rhythms: a possible new player in non-alcoholic fatty liver disease pathophysiology. J Mol Med. 2019;97:741ā€“59.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  10. Pilorz V, Helfrich-Fƶrster C, Oster H. The role of the circadian clock system in physiology. Pflugers Arch. 2018;470:227ā€“39.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  11. Bass J, Lazar MA. Circadian time signatures of fitness and disease. Science. 2016;354:994ā€“9.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  12. Saran AR, Dave S, Zarrinpar A. Circadian rhythms in the pathogenesis and treatment of fatty liver disease. Gastroenterology. 2020;158:1948ā€“.e1.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  13. Shetty A, Hsu JW, Manka PP, Syn WK. Role of the circadian clock in the metabolic syndrome and nonalcoholic fatty liver disease. Dig Dis Sci. 2018;63:3187ā€“206.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  14. Patke A, Young MW, Axelrod S. Molecular mechanisms and physiological importance of circadian rhythms. Nat Rev Mol Cell Biol. 2020;21:67ā€“84.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  15. Marcheva B, Ramsey KM, Buhr ED, Kobayashi Y, Su H, Ko CH, et al. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature. 2010;466:627ā€“31.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  16. Birky TL, Bray MS. Understanding circadian gene function: animal models of tissue-specific circadian disruption. IUBMB Life. 2014;66:34ā€“41.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  17. Shimba S, Ogawa T, Hitosugi S, Ichihashi Y, Nakadaira Y, Kobayashi M, et al. Deficient of a clock gene, brain and muscle Arnt-like protein-1 (BMAL1), induces dyslipidemia and ectopic fat formation. PLoS ONE. 2011;6:e25231.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  18. Jouffe C, Weger BD, Martin E, Atger F, Weger M, Gobet C, et al. Disruption of the circadian clock component BMAL1 elicits an endocrine adaption impacting on insulin sensitivity and liver disease. Proc Natl Acad Sci USA. 2022;119:e2200083119.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  19. Shen Q, Yang Y, Liu W, Wang M, Shao Y, Xu B, et al. Organ-specific alterations in circadian genes by vertical sleeve gastrectomy in an obese diabetic mouse model. Sci Bull. 2017;62:467ā€“9.

    ArticleĀ  CASĀ  Google ScholarĀ 

  20. Lim YC, Hoe VCW, Darus A, Bhoo-Pathy N. Association between night-shift work, sleep quality and metabolic syndrome. Occup Environ Med. 2018;75:716ā€“23.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  21. Gan Y, Yang C, Tong X, Sun H, Cong Y, Yin X, et al. Shift work and diabetes mellitus: a meta-analysis of observational studies. Occup Environ Med. 2015;72:72ā€“8.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  22. Kondratov RV, Kondratova AA, Gorbacheva VY, Vykhovanets OV, Antoch MP. Early aging and age-related pathologies in mice deficient in BMAL1, the core componentof the circadian clock. Genes Dev. 2006;20:1868ā€“73.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  23. Shi SQ, Ansari TS, Mcguinness OP, Wasserman DH, Johnson CH. Circadian disruption leads to insulin resistance and obesity. Curr Biol. 2013;23:372ā€“81.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  24. Yang G, Zhang J, Jiang T, Monslow J, Tang SY, Todd L, et al. BMAL1 deletion in myeloid cells attenuates atherosclerotic lesion development and restrains abdominal aortic aneurysm formation in hyperlipidemic mice. Arterioscler Thromb Vasc Biol. 2020;40:1523ā€“32.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  25. Kitchen GB, Cunningham PS, Poolman TM, Iqbal M, Maidstone R, Baxter M, et al. The clock gene BMAL1 inhibits macrophage motility, phagocytosis, and impairs defense against pneumonia. Proc Natl Acad Sci USA. 2020;117:1543ā€“51.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  26. Rui L. Energy metabolism in the liver. Compr Physiol. 2014;4:177ā€“97.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  27. Rada P, GonzĆ”lez-RodrĆ­guez Ɓ, GarcĆ­a-MonzĆ³n C, Valverde ƁM. Understanding lipotoxicity in NAFLD pathogenesis: is CD36 a key driver? Cell Death Dis. 2020;11:802.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  28. Zhou J, Febbraio M, Wada T, Zhai Y, Kuruba R, He J, et al. Hepatic fatty acid transporter CD36 is a common target of LXR, PXR, and PPARgamma in promoting steatosis. Gastroenterology. 2008;134:556ā€“67.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  29. Xiao Y, Kim M, Lazar MA. Nuclear receptors and transcriptional regulation in non-alcoholic fatty liver disease. Mol Metab. 2021;50:101119.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  30. Ko CW, Qu J, Black DD, Tso P. Regulation of intestinal lipid metabolism: current concepts and relevance to disease. Nat Rev Gastroenterol Hepatol. 2020;17:169ā€“83.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  31. Jones JG. Hepatic glucose and lipid metabolism. Diabetologia. 2016;59:1098ā€“103.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  32. Grabner GF, Xie H, Schweiger M, Zechner R. Lipolysis: cellular mechanisms for lipid mobilization from fat stores. Nat Metab. 2021;3:1445ā€“65.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (grant numbers 81800751, 81970458, and 82100882).

Author information

Authors and Affiliations

Authors

Contributions

WL and QS conceived, designed, and supervised the study. CZ, HC, BX, YS, QY and RH conducted the study and analyzed the results. CZ and ZZ wrote and revised the manuscript. QS provided financial support.

Corresponding authors

Correspondence to Wenjuan Liu or Qiwei Shen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisherā€™s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, C., Chen, H., Zhang, Z. et al. BMAL1 deletion protects against obesity and non-alcoholic fatty liver disease induced by a high-fat diet. Int J Obes 48, 469ā€“476 (2024). https://doi.org/10.1038/s41366-023-01435-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-023-01435-w

Search

Quick links