Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pediatrics

Left atrial remodeling in adolescents with obesity evaluated by speckle-tracking echocardiography

Abstract

Background and aims

In adolescents with obesity, a left atrial (LA) enlargement has been reported. However, data regarding its function and its stiffness are missing. The aim of this study was to describe LA morphology and function, using speckle-tracking echocardiography (STE) and to explore their potential determinants in adolescents with obesity.

Methods

Twenty-eight adolescent women with obesity (13.2 ± 1.4 yr) with an illness duration of 130 ± 27 months and 33 controls (14.1 ± 2.0 yr) underwent a resting echocardiography including an analysis of left ventricular (LV) and LA morphologies and strains. A fasting venous blood sample was performed to biochemical determinations including inflammation markers.

Results

LA volume and stiffness index were increased in adolescents with obesity compared to controls. LA reservoir, conduit and booster pump functions were not different between groups. By stepwise forward multivariate regression analyses, systolic blood pressures, cardiac output and sedimentation rate were the independent determinants of LA volume (p < 0.0001, β-coefficient = 0.460) whereas only the body mass index was an independent determinant of LA stiffness (p = 0.003, β-coefficient = 0.413).

Conclusion

In adolescents with obesity, we observed a specific LA remodeling, including higher volume and lower stiffness, which could constitute early signs of an altered LV diastolic function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Regional atrial strains.
Fig. 2: Correlation with left atrial volume and stiffness.

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author.

References

  1. Leite-Moreira AF, Oliveira SM, Marino P. Left atrial stiffness and its implications for cardiac function. Future Cardiol Mars. 2007;3:175–83.

    Article  Google Scholar 

  2. Spencer KT, Mor-Avi V, Gorcsan J, DeMaria AN, Kimball TR, Monaghan MJ, et al. Effects of aging on left atrial reservoir, conduit, and booster pump function: a multi-institution acoustic quantification study. Heart Br Card Soc Mars. 2001;85:272–7.

    Article  CAS  Google Scholar 

  3. Barbier P, Solomon SB, Schiller NB, Glantz SA. Left atrial relaxation and left ventricular systolic function determine left atrial reservoir function. Circulation. 1999;100:427–36.

    Article  CAS  PubMed  Google Scholar 

  4. Suga H. Importance of atrial compliance in cardiac performance. Circ Res. 1974;35:39–43.

    Article  CAS  PubMed  Google Scholar 

  5. Piotrowski G, Goch A, Wlazłowski R, Gawor Z, Goch JH. Non-invasive methods of atrial function evaluation in heart diseases. Med Sci Monit Int Med J Exp Clin Res. Août. 2000;6:827–39.

    CAS  Google Scholar 

  6. Douglas PS. The left atrium: a biomarker of chronic diastolic dysfunction and cardiovascular disease risk. J Am Coll Cardiol. 2003;42:1206–7.

    Article  PubMed  Google Scholar 

  7. Abhayaratna WP, Seward JB, Appleton CP, Douglas PS, Oh JK, Tajik AJ, et al. Left atrial size: physiologic determinants and clinical applications. J Am Coll Cardiol. 2006;47:2357–63.

    Article  PubMed  Google Scholar 

  8. Aiad NN, Hearon C, Hieda M, Dias K, Levine BD, Sarma S. Mechanisms of left atrial enlargement in obesity. Am J Cardiol. 2019;124:442–7.

    Article  PubMed  Google Scholar 

  9. Iacobellis G, Ribaudo MC, Leto G, Zappaterreno A, Vecci E, Di Mario U, et al. Influence of excess fat on cardiac morphology and function: study in uncomplicated obesity. Obes Res. Août. 2002;10:767–73.

    Article  Google Scholar 

  10. Mahajan R, Lau DH, Brooks AG, Shipp NJ, Manavis J, Wood JPM, et al. Electrophysiological, electroanatomical, and structural remodeling of the atria as consequences of sustained obesity. J Am Coll Cardiol. 2015;66:1–11.

    Article  CAS  PubMed  Google Scholar 

  11. Abed HS, Samuel CS, Lau DH, Kelly DJ, Royce SG, Alasady M, et al. Obesity results in progressive atrial structural and electrical remodeling: implications for atrial fibrillation. Heart Rhythm. 2013;10:90–100.

    Article  PubMed  Google Scholar 

  12. Chirinos JA, Sardana M, Satija V, Gillebert TC, De Buyzere ML, Chahwala J, et al. Effect of obesity on left atrial strain in persons aged 35 – 55 years (The Asklepios Study). Am J Cardiol. 2019;123:854–61.

    Article  PubMed  Google Scholar 

  13. Mahajan R, Nelson A, Pathak RK, Middeldorp ME, Wong CX, Twomey DJ, et al. Electroanatomical remodeling of the atria in obesity: impact of adjacent epicardial fat. JACC Clin Electrophysiol. 2018;4:1529–40.

    Article  PubMed  Google Scholar 

  14. Ayer JG, Sholler GF, Celermajer DS. Left atrial size increases with body mass index in children. Int J Cardiol. 2010;141:61–7.

    Article  PubMed  Google Scholar 

  15. Mahfouz RA, Gomma A, Goda M, Safwat M. Relation of left atrial stiffness to insulin resistance in obese children: doppler strain imaging study. Echocardiogr Mt Kisco N. 2015;32:1157–63.

    Article  Google Scholar 

  16. Obert P, Gueugnon C, Nottin S, Vinet A, Gayrard S, Rupp T, et al. Two-dimensional strain and twist by vector velocity imaging in adolescents with severe obesity. Obes Silver Spring Md. 2012;20:2397–405.

    Article  Google Scholar 

  17. Pérez W, Melgar P, Garcés A, de Marquez AD, Merino G, Siu C. Overweight and obesity of school-age children in El Salvador according to two international systems: a population-based multilevel and spatial analysis. BMC Public Health [Internet]. 14 mai 2020 [cité 2 janv 2021];20. Disponible sur: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7227092/

  18. Orimadegun A, Omisanjo A. Evaluation of five formulae for estimating body surface area of nigerian children. Ann Med Health Sci Res. 2014;4:889–98.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ramírez-Vélez R, Moreno-Jiménez J, Correa-Bautista JE, Martínez-Torres J, González-Ruiz K, González-Jiménez E, et al. Using LMS tables to determine waist circumference and waist-to-height ratios in Colombian children and adolescents: the FUPRECOL study. BMC Pediatr [Internet]. 2017 [cité 29 mars 2021];17. Disponible sur: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5506645/

  20. Barreira TV, Staiano AE, Katzmarzyk PT. Validity assessment of a portable bioimpedance scale to estimate body fat percentage in white and African-American children and adolescents. Pediatr Obes. 2013;8:e29–32.

    Article  CAS  PubMed  Google Scholar 

  21. Lurbe E, Agabiti-Rosei E, Cruickshank JK, Dominiczak A, Erdine S, Hirth A, et al. European Society of Hypertension guidelines for the management of high blood pressure in children and adolescents. J Hypertens. 2016;34:1887–920.

    Article  CAS  PubMed  Google Scholar 

  22. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2015;16:233–70.

    Article  PubMed  Google Scholar 

  23. Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I, et al. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol. 1986;57:450–8.

    Article  CAS  PubMed  Google Scholar 

  24. de Simone G, Daniels SR, Devereux RB, Meyer RA, Roman MJ, de Divitiis O, et al. Left ventricular mass and body size in normotensive children and adults: assessment of allometric relations and impact of overweight. J Am Coll Cardiol. 1992;20:1251–60.

    Article  PubMed  Google Scholar 

  25. Iacobellis G, Willens HJ. Echocardiographic epicardial fat: a review of research and clinical applications. J Am Soc Echocardiogr. 2009;22:1311–9.

    Article  PubMed  Google Scholar 

  26. Maufrais C, Schuster I, Doucende G, Vitiello D, Rupp T, Dauzat M, et al. Endurance training minimizes age-related changes of left ventricular twist-untwist mechanics. J Am Soc Echocardiogr. 2014;27:1208–15.

    Article  PubMed  Google Scholar 

  27. Wang J, Khoury DS, Thohan V, Torre-Amione G, Nagueh SF. Global diastolic strain rate for the assessment of left ventricular relaxation and filling pressures. Circulation. 2007;115:1376–83.

    Article  PubMed  Google Scholar 

  28. Vieira MJ, Teixeira R, Gonçalves L, Gersh BJ. Left atrial mechanics: echocardiographic assessment and clinical implications. J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr. 2014;27:463–78.

    Article  Google Scholar 

  29. Kurt M, Wang J, Torre-Amione G, Nagueh SF. Left atrial function in diastolic heart failure. Circ Cardiovasc Imaging. 2009;2:10–5.

    Article  PubMed  Google Scholar 

  30. Daniels SR, Witt SA, Glascock B, Khoury PR, Kimball TR. Left atrial size in children with hypertension: the influence of obesity, blood pressure, and left ventricular mass. J Pediatr. Août. 2002;141:186–90.

    Article  Google Scholar 

  31. Slany J. Hypertension and overweight. Wien Med Wochenschr 1946. 2008;158:370–2.

    Article  Google Scholar 

  32. Dustan HP. Obesity and hypertension. Diabetes Care. 1991;14:488–504.

    Article  CAS  PubMed  Google Scholar 

  33. Aulie HA, Estensen ME, Selvaag AM, Lilleby V, Murbraech K, Flatø B, et al. Cardiac function in adult patients with juvenile idiopathic arthritis. J Rheumatol. 2015;42:1716–23.

    Article  CAS  PubMed  Google Scholar 

  34. Paulus WJ, Tschöpe C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol. 23 juill. 2013;62:263–71.

    Article  Google Scholar 

  35. Bouglé D, Zunquin G, Sesbouë B, Sabatier JP. Relationships of cardiorespiratory fitness with metabolic risk factors, inflammation, and liver transaminases in overweight youths. Int J Pediatr [Internet]. 2010 [cité 13 mars 2021];2010. Disponible sur: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2905730/

  36. Šileikienė R, Adamonytė K, Ziutelienė A, Ramanauskienė E, Vaškelytė JJ. Atrial and ventricular structural and functional alterations in obese children. Med Kaunas Lith. 2021;57:562.

    Google Scholar 

  37. Labombarda F, Mulet B, Maragnes P, Beygui F. Impaired left atrial stiffness in patients with corrected congenital left ventricular outflow obstructions. Echocardiogr Mt Kisco N. 2021;38:47–56.

    Article  Google Scholar 

  38. Steele JM, Urbina EM, Mazur WM, Khoury PR, Nagueh SF, Tretter JT, et al. Left atrial strain and diastolic function abnormalities in obese and type 2 diabetic adolescents and young adults. Cardiovasc Diabetol. 2020;19:163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ren J, Wu NN, Wang S, Sowers JR, Zhang Y. Obesity cardiomyopathy: evidence, mechanisms, and therapeutic implications. Physiol Rev. 2021;101:1745–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kruszewska J, Cudnoch-Jedrzejewska A, Czarzasta K. Remodeling and fibrosis of the cardiac muscle in the course of obesity-pathogenesis and involvement of the extracellular matrix. Int J Mol Sci. 2022;23:4195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Karam BS, Chavez-Moreno A, Koh W, Akar JG, Akar FG. Oxidative stress and inflammation as central mediators of atrial fibrillation in obesity and diabetes. Cardiovasc Diabetol. 2017;16:120.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Thomas L, Abhayaratna WP. Left atrial reverse remodeling: mechanisms, evaluation, and clinical significance. JACC Cardiovasc Imaging. 2017;10:65–77.

    Article  PubMed  Google Scholar 

  43. Badano LP, Kolias TJ, Muraru D, Abraham TP, Aurigemma G, Edvardsen T, et al. Standardization of left atrial, right ventricular, and right atrial deformation imaging using two-dimensional speckle tracking echocardiography: a consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. Eur Heart J Cardiovasc Imaging. 2018;19:591–600.

    Article  PubMed  Google Scholar 

  44. Gupta S, Matulevicius SA, Ayers CR, Berry JD, Patel PC, Markham DW, et al. Left atrial structure and function and clinical outcomes in the general population. Eur Heart J. 2013;34:278–85.

    Article  PubMed  Google Scholar 

  45. Cauwenberghs N, Haddad F, Sabovčik F, Kobayashi Y, Amsallem M, Morris DA, et al. Subclinical left atrial dysfunction profiles for prediction of cardiac outcome in the general population. J Hypertens. 2020;38:2465–74.

    Article  CAS  PubMed  Google Scholar 

  46. Doria de Vasconcellos H, Betoko A, Ciuffo LA, Moreira HT, Nwabuo CC, Ambale-Venkatesh B, et al. Sex differences in the association of cumulative body mass index from early adulthood to middle age and left atrial remodeling evaluated by three-dimensional echocardiography: the coronary artery risk development in young adults study. J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr. 2020;33:878–87.e3.

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully thank Dr Anne-Véronique Fourot and his team (SSR pédiatrique Tza Nou, UGECAM ALPC La Bourboule), as well as Dr Charlotte Cardenoux and his team (CMI de Romagnat) for their contribution to patient recruitment. This work was supported the Platform 3 A, funded by the European Regional Development Fund, the French Ministry of Research, Higher Education and Innovation, the Provence-Alpes-Côte-d’Azur region, the Departmental Council of Vaucluse and the Urban Community of Avignon.

Author information

Authors and Affiliations

Authors

Contributions

PJ: study design, methodology, investigation, data collection, formal analysis, writing, drafting the initial manuscript. ME: methodology, investigation, supervision. RE: methodology, investigation. TD: methodology, investigation. NS: study design, methodology, investigation, supervision, data collection, formal analysis, resources, writing, drafting the initial manuscript. All authors were involved in writing the paper and had final approval of the submitted and published versions.

Corresponding author

Correspondence to Justine Paysal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paysal, J., Merlin, E., Rochette, E. et al. Left atrial remodeling in adolescents with obesity evaluated by speckle-tracking echocardiography. Int J Obes 48, 111–117 (2024). https://doi.org/10.1038/s41366-023-01397-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-023-01397-z

Search

Quick links