Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pediatrics

Kidney damage predictors in children with metabolically healthy and metabolically unhealthy obesity phenotype

Subjects

Abstract

Background

Obesity and kidney damage have been closely linked in adults, but little is still known in childhood.

Objective

To identify predictors of kidney damage in children with metabolically healthy (MHO) and metabolically unhealthy (MUO) obesity phenotypes.

Methods

We retrospectively examined 396 children with obesity (mean age 10.72 ± 2.71 years, body mass index-standard deviation score, BMI-SDS, 2.23 ± 0.57) stratified according to metabolic phenotypes. Kidney damage was defined as the presence of reduced estimated glomerular filtration rate (eGFR < 90 mL/min/1.73m2) and/or albuminuria ( 30 mg/g urinary creatinine).

Results

Kidney damage was found in 20.9% of the study population. Children with kidney damage had higher BMI-SDS, homeostasis model assessment of insulin resistance (HOMA-IR), and inflammation markers levels and increased prevalence of non-alcoholic fatty liver disease (NAFLD) than those without kidney damage (all p < 0.005). MUO and MHO subjects had respectively an odds ratio (OR) to show kidney damage of of 1.92 (95%CI:1.22–3.01; p = 0.005) and 1.05 (95%CI:1.00–1.09; p = 0.028) after adjustments. Moreover, we found that only HOMA-IR was closely associated to kidney damage in MUO group (OR = 2.07;95%CI:1.20–3.57; p = 0.007), while HOMA-IR (OR = 1.15;95%CI:1.02–1.29; p = 0.011) and uric acid (OR = 1.15;95% CI:1.02–1.30; p = 0.010) were the only significant risk factors for kidney damage in MHO group.

Conclusion

An increased risk of kidney damage has been observed in children with obesity and in particular in those with MUO phenotype. As their role on kidney function, HOMA-IR should be monitored in MUO children and both HOMA-IR and uric acid in MHO children.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Flow-chart describing patients’ enrollment.

Similar content being viewed by others

Data availability

The data presented in this study are available on request from the corresponding author. The data are not publicly available due to the presence of information that could compromise research participant privacy.

References

  1. Jebeile H, Kelly AS, O’Malley G, Baur LA. Obesity in children and adolescents: epidemiology, causes, assessment, and management. Lancet Diabetes Endocrinol. 2022;10:351–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Di Bonito P, Pacifico L, Licenziati MR, Maffeis C, Morandi A, Manco M, et al. Elevated blood pressure, cardiometabolic risk and target organ damage in youth with overweight and obesity. Nutr Metab Cardiovasc Dis. 2020;30:1840–7.

    PubMed  Google Scholar 

  3. Marzuillo P, Grandone A, Di Sessa A, Guarino S, Diplomatico M, Umano GR, et al. Anthropometric and Biochemical Determinants of Estimated Glomerular Filtration Rate in a Large Cohort of Obese Children. J Ren Nutr. 2018;28:359–62.

    CAS  PubMed  Google Scholar 

  4. Eslam M, Alkhouri N, Vajro P, Baumann U, Weiss R, Socha P, et al. Defining paediatric metabolic (dysfunction)-associated fatty liver disease: an international expert consensus statement. Lancet Gastroenterol Hepatol. 2021;6:864–73.

    PubMed  Google Scholar 

  5. Di Sessa A, Guarino S, Umano GR, Arenella M, Alfiero S, Quaranta G, et al. MAFLD in Obese Children: A Challenging Definition. Children (Basel). 2021;8:247.

    PubMed  Google Scholar 

  6. Lonardo A, Mantovani A, Lugari S, Targher G. Epidemiology and pathophysiology of the association between NAFLD and metabolically healthy or metabolically unhealthy obesity. Ann Hepatol. 2020;19:359–66.

    CAS  PubMed  Google Scholar 

  7. Genovesi S, Antolini L, Orlando A, Gilardini L, Bertoli S, Giussani M, et al. Cardiovascular Risk Factors Associated With the Metabolically Healthy Obese (MHO) Phenotype Compared to the Metabolically Unhealthy Obese (MUO) Phenotype in Children. Front Endocrinol (Lausanne). 2020;11:27.

    PubMed  Google Scholar 

  8. Damanhoury S, Newton AS, Rashid M, Hartling L, Byrne JLS, Ball GDC. Defining metabolically healthy obesity in children: a scoping review. Obes Rev. 2018;19:1476–91.

    CAS  PubMed  Google Scholar 

  9. Di Bonito P, Miraglia Del Giudice E, Chiesa C, Licenziati MR, Manco M, Franco F, et al. Preclinical signs of liver and cardiac damage in youth with metabolically healthy obese phenotype. Nutr Metab Cardiovasc Dis. 2018;28:1230–6.

    PubMed  Google Scholar 

  10. Eckel N, Meidtner K, Kalle-Uhlmann T, Stefan N, Schulze MB. Metabolically healthy obesity and cardiovascular events: A systematic review and meta-analysis. Eur J Prev Cardiol. 2016;23:956–66.

    PubMed  Google Scholar 

  11. Rhee CM, Ahmadi SF, Kalantar-Zadeh K. The dual roles of obesity in chronic kidney disease: a review of the current literature. Curr Opin Nephrol Hypertens. 2016;25:208–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Panwar B, Hanks LJ, Tanner RM, Muntner P, Kramer H, McClellan WM, et al. Obesity, metabolic health, and the risk of end-stage renal disease. Kidney Int. 2015;87:1216–22.

    PubMed  Google Scholar 

  13. Savino A, Pelliccia P, Chiarelli F, Mohn A. Obesity-related renal injury in childhood. Horm Res Paediatr. 2010;73:303–11.

    CAS  PubMed  Google Scholar 

  14. Di Bonito P, Di Sessa A. New Diagnostic Criteria for Hypertension in Children and Adolescents: Lights and Shadows. Children (Basel). 2020;7:196.

    PubMed  Google Scholar 

  15. Martinez-Montoro JI, Morales E, Cornejo-Pareja I, Tinahones FJ, Fernandez-Garcia JC. Obesity-related glomerulopathy: Current approaches and future perspectives. Obes Rev. 2022;23:e13450.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Castro BBA, Foresto-Neto O, Saraiva-Camara NO, Sanders-Pinheiro H. Renal lipotoxicity: Insights from experimental models. Clin Exp Pharmacol Physiol. 2021;48:1579–88.

    CAS  PubMed  Google Scholar 

  17. Colasante AM, Bartiromo M, Nardolillo M, Guarino S, Marzuillo P, Mangoni di SSG, et al. Tangled relationship between insulin resistance and microalbuminuria in children with obesity. World J Clin Pediatr. 2022;11:455–62.

    PubMed  PubMed Central  Google Scholar 

  18. Abdelhafiz AH, Ahmed S, El Nahas M. Microalbuminuria: marker or maker of cardiovascular disease. Nephron Exp Nephrol. 2011;119:e6–10.

    CAS  PubMed  Google Scholar 

  19. Andrassy KM. Comments on ‘KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease’. Kidney Int. 2013;84:622–3.

    CAS  PubMed  Google Scholar 

  20. Kovesdy CP, Furth SL, Zoccali C. World Kidney Day Steering C. Obesity and Kidney Disease: Hidden Consequences of the Epidemic. Can J Kidney Health Dis. 2017;4:2054358117698669.

    PubMed  PubMed Central  Google Scholar 

  21. Kotsis V, Martinez F, Trakatelli C, Redon J. Impact of Obesity in Kidney Diseases. Nutrients. 2021;13:4482.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Nawaz S, Chinnadurai R, Al-Chalabi S, Evans P, Kalra PA, Syed AA, et al. Obesity and chronic kidney disease: A current review. Obes Sci Pract. 2023;9:61–74.

    PubMed  Google Scholar 

  23. Sanad M, Gharib A. Evaluation of microalbuminuria in obese children and its relation to metabolic syndrome. Pediatr Nephrol. 2011;26:2193–9.

    PubMed  Google Scholar 

  24. Di Sessa A, Umano GR, Cirillo G, Passaro AP, Verde V, Cozzolino D, et al. Pediatric non-alcoholic fatty liver disease and kidney function: Effect of HSD17B13 variant. World J Gastroenterol. 2020;26:5474–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Flynn JT, Kaelber DC, Baker-Smith CM, Blowey D, Carroll AE, Daniels SR, et al. Clinical Practice Guideline for Screening and Management of High Blood Pressure in Children and Adolescents. Pediatrics. 2017;140:e20171904.

    PubMed  Google Scholar 

  26. Gicchino MF, Di Sessa A, Guarino S, Miraglia Del Giudice E, Olivieri AN, Marzuillo P. Prevalence of and factors associated to chronic kidney disease and hypertension in a cohort of children with juvenile idiopathic arthritis. Eur J Pediatr. 2021;180:655–61.

    CAS  PubMed  Google Scholar 

  27. Marzuillo P, Di Sessa A, Cirillo G, Umano GR, Pedulla M, La Manna A, et al. Transmembrane 6 superfamily member 2 167K allele improves renal function in children with obesity. Pediatr Res. 2020;88:300–4.

    CAS  PubMed  Google Scholar 

  28. Marzuillo P, Guarino S, Di Sessa A, Rambaldi PF, Reginelli A, Vacca G, et al. Congenital Solitary Kidney from Birth to Adulthood. J Urol. 2021;205:1466–75.

    PubMed  Google Scholar 

  29. Cho MH. Measurement of urinary protein in children. Child Kidney Dis. 2022;26:69–73.

    Google Scholar 

  30. Correia-Costa L, Schaefer F, Afonso AC, Bustorff M, Guimaraes JT, Guerra A, et al. Normalization of glomerular filtration rate in obese children. Pediatr Nephrol. 2016;31:1321–8.

    PubMed  Google Scholar 

  31. Mackowiak-Lewandowicz K, Ostalska-Nowicka D, Zaorska K, Kaczmarek E, Zachwieja J, Witt M, et al. Chronic kidney disease predictors in obese adolescents. Pediatr Nephrol. 2022;37:2479–88.

    PubMed  PubMed Central  Google Scholar 

  32. Cheng CH. Albuminuria in childhood is a risk factor for chronic kidney disease and end-stage renal disease. Pediatr Neonatol. 2016;57:263–4.

    PubMed  Google Scholar 

  33. Sarafidis PA. Obesity, insulin resistance and kidney disease risk: insights into the relationship. Curr Opin Nephrol Hypertens. 2008;17:450–6.

    CAS  PubMed  Google Scholar 

  34. Correia-Costa L, Azevedo A, Caldas, Afonso A. Childhood Obesity and Impact on the Kidney. Nephron. 2019;143:8–11.

    PubMed  Google Scholar 

  35. Garcia-Carro C, Vergara A, Bermejo S, Azancot MA, Sellares J, Soler MJ. A Nephrologist Perspective on Obesity: From Kidney Injury to Clinical Management. Front Med (Lausanne). 2021;8:655871.

    PubMed  Google Scholar 

  36. De Cosmo S, Menzaghi C, Prudente S, Trischitta V. Role of insulin resistance in kidney dysfunction: insights into the mechanism and epidemiological evidence. Nephrol Dial Transplant. 2013;28:29–36.

    PubMed  Google Scholar 

  37. Spoto B, Pisano A, Zoccali C. Insulin resistance in chronic kidney disease: a systematic review. Am J Physiol Renal Physiol. 2016;311:F1087–F108.

    CAS  PubMed  Google Scholar 

  38. Rodenbach KE, Schneider MF, Furth SL, Moxey-Mims MM, Mitsnefes MM, Weaver DJ, et al. Hyperuricemia and Progression of CKD in Children and Adolescents: The Chronic Kidney Disease in Children (CKiD) Cohort Study. Am J Kidney Dis. 2015;66:984–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Tsai WC, Wu HY, Peng YS, Ko MJ, Wu MS, Hung KY, et al. Risk Factors for Development and Progression of Chronic Kidney Disease: A Systematic Review and Exploratory Meta-Analysis. Medicine (Baltimore). 2016;95:e3013.

    PubMed  Google Scholar 

  40. La Scola C, Guarino S, Pasini A, Capalbo D, Liguori L, Di Sessa A, et al. Effect of Body Mass Index on Estimated Glomerular Filtration Rate Levels in Children With Congenital Solitary Kidney: A Cross-Sectional Multicenter Study. J Ren Nutr. 2020;30:261–7.

    PubMed  Google Scholar 

  41. Joo HJ, Kim GR, Choi DW, Joo JH, Park EC. Uric acid level and kidney function: a cross-sectional study of the Korean national health and nutrition examination survey (2016-2017). Sci Rep. 2020;10:21672.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Souweine JS, Corbel A, Rigothier C, Roque CD, Hadjadj S, Cristol JP, et al. Interest of albuminuria in nephrology, diabetology and as a marker of cardiovascular risk. Ann Biol Clin (Paris). 2019;77:26–35.

    CAS  PubMed  Google Scholar 

  43. Tsioufis C, Mazaraki A, Dimitriadis K, Stefanidis CJ, Stefanadis C. Microalbuminuria in the paediatric age: current knowledge and emerging questions. Acta Paediatr. 2011;100:1180–4.

    CAS  PubMed  Google Scholar 

  44. Calcaterra V, Larizza D, De Silvestri A, Albertini R, Vinci F, Regalbuto C, et al. Gender-based differences in the clustering of metabolic syndrome factors in children and adolescents. J Pediatr Endocrinol Metab. 2020;33:279–88.

    PubMed  Google Scholar 

  45. Barstad LH, Juliusson PB, Johnson LK, Hertel JK, Lekhal S, Hjelmesaeth J. Gender-related differences in cardiometabolic risk factors and lifestyle behaviors in treatment-seeking adolescents with severe obesity. BMC Pediatr. 2018;18:61.

    PubMed  PubMed Central  Google Scholar 

  46. Gerdts E, Regitz-Zagrosek V. Sex differences in cardiometabolic disorders. Nat Med. 2019;25:1657–66.

    CAS  PubMed  Google Scholar 

  47. Zhernakova DV, Sinha T, Andreu-Sánchez S, Prins JR, Kurilshikov A, Balder JW, et al. Age-dependent sex differences in cardiometabolic risk factors. Nat Cardiovasc Res. 2022;1:844–854.

    Google Scholar 

  48. Spaziani M, Tarantino C, Tahani N, Gianfrilli D, Sbardella E, Lenzi A, et al. Hypothalamo-Pituitary axis and puberty. Mol Cell Endocrinol. 2021;520:111094.

    CAS  PubMed  Google Scholar 

  49. Breehl L, Caban O. Physiology, Puberty. StatPearls. Treasure Island (FL) 2023.

  50. Warady BA, Chadha V. Chronic kidney disease in children: the global perspective. Pediatr Nephrol. 2007;22:1999–2009.

    PubMed  PubMed Central  Google Scholar 

  51. Xu Q, Zhang J, Han H, Chen N, Lai F, Liu Y, et al. Association between intrahepatic triglyceride content in subjects with metabolically healthy abdominal obesity and risks of pre-diabetes plus diabetes: an observational study. BMJ Open. 2022;12:e057820.

    PubMed  PubMed Central  Google Scholar 

  52. Valenzuela PL, Carrera-Bastos P, Castillo-Garcia A, Lieberman DE, Santos-Lozano A, Lucia A. Obesity and the risk of cardiometabolic diseases. Nat Rev Cardiol. 2023;20:475–94.

    PubMed  Google Scholar 

  53. Drozdz D, Alvarez-Pitti J, Wojcik M, Borghi C, Gabbianelli R, Mazur A, et al. Obesity and Cardiometabolic Risk Factors: From Childhood to Adulthood. Nutrients. 2021;13:4176.

    PubMed  PubMed Central  Google Scholar 

  54. Marzuillo P, Grandone A, Perrone L, Miraglia Del Giudice E. Controversy in the diagnosis of pediatric non-alcoholic fatty liver disease. World J Gastroenterol. 2015;21:6444–50.

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This paper was supported by funding with protocol number 204328/20 provided by Department of Woman, Child and of General and Specialized Surgery, Università degli Studi della Campania “Luigi Vanvitelli”.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, ADS and PM; methodology, ADS, EMDG; software, ADS, PM, AP; validation, EMDG, PM; formal analysis, ADS, PM; investigation, AP, SG, EMDG; data curation, APP, AMC, SC, GRU; writing—original draft preparation, ADS, PM; writing—review and editing, ADS, PM, EMDG; visualization, PM, AP; supervision, PM. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Anna Di Sessa.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Sessa, A., Passaro, A.P., Colasante, A.M. et al. Kidney damage predictors in children with metabolically healthy and metabolically unhealthy obesity phenotype. Int J Obes 47, 1247–1255 (2023). https://doi.org/10.1038/s41366-023-01379-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-023-01379-1

Search

Quick links