Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Adipocyte and Cell Biology

Anti-obesity effects of chlorogenic acid and caffeine- lipid nanoparticles through PPAR-γ/C/EBP-ɑ pathways

Subjects

Abstract

Obesity is considered one of the most crucial health problems of the century. Therefore, reducing obesity is critically important. Caffeine (CF) and chlorogenic acid (CLA), which are substantial components in green bean coffee which maximize thermogenesis in brown adipose tissue. In our study, we have prepared CF, CLA, and CF + CLA loaded-solid lipid nanoparticles (SLN) since the SLNs are cost-effective, tissue-localized, and highly stable. The central composite design model was preferred to select the optimized formulation. UHPLC was used for quantification related to the CF and CLA amounts. The high-pressure homogenization (HPH) method was used while SLN formulations were prepared in the presence of poloxamer® 407 (surfactant) and Compritol® 888 ATO (solid lipid). The nanoparticles were characterized, followed by the utilization of 3T3-F442A cell lines for the evaluation of the adipogenesis activity of the formulations. Then, rt-PCR and ELISA studies of adipogenic markers were conducted. After optimal formulations were selected with an average of 110.2 ± 0.1 nm, CF (1 mM) + CLA (0.5 mM)—loaded SLN formulation has been proven significantly effective by using PPAR-γ/C/EBP-a pathways. In a nutshell, our study has shown that CF + CLA loaded-SLN has been affected 45.8% times more than regular extracted coffee (p < 0.05) on the adipocyte cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Release data and DSC Thermograms.
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data will be available on request.

References

  1. Nan-Nong Sun T-YW, Chi-Fai Chau N. Natural dietary and herbal products in anti-obesity treatment 1. Molecules. 2016;21:1351.

    Article  PubMed  PubMed Central  Google Scholar 

  2. WHO, WHO, 2021.

  3. WHO. Retrieved from https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight. 2018.

  4. WHO, https://www.who.int/news/item/04-03-2022-world-obesity-day-2022-acceleratingaction-to-stopobesity#:~:text=More%20than%201%20billion%20people,This%20number%20is%20still%20increasing. 2022.

  5. Apovian CMALJ, Bessesen DH, McDonnell ME, Murad MH, Pagotto U, Ryan DH, et al. Pharmacological management of obesity: an endocrine society clinical practice guideline. J Clin Endocr Metab. 2015;100:1–14.

  6. Kong L, Xu M, Qiu Y, Liao M, Zhang Q, Yang L, et al. Chlorogenic acid and caffeine combination attenuates adipogenesis by regulating fat metabolism and inhibiting adipocyte differentiation in 3T3- L1 cells. J Food Biochem. 2021;45:1–12.

    Article  Google Scholar 

  7. Zheng G, Qiu Y, Zhang Q-F, Li D. Chlorogenic acid and caffeine in combination inhibit fat accumulation by regulating hepatic lipid metabolism-related enzymes in mice. Br J Nutr. 2014;112:1–14.

    Article  Google Scholar 

  8. Banerjee P, Ali Z, Levine B, Fowler DR. Fatal caffeine intoxication: a series of eight cases from 1999 to 2009. J Forensic Sci. 2014;59:865–8.

    Article  CAS  PubMed  Google Scholar 

  9. Zhao Y, Wang J, Ballevre O, Luo H, Zhang W. Antihypertensive effects and mechanisms of chlorogenic acids. Hypertens Res. 2012;35:370–4.

    Article  CAS  PubMed  Google Scholar 

  10. Giuseppe Faudone SA, Merk D. The medicinal chemistry of caffeine. J Med Chem. 2021;61:7156–78.

    Article  Google Scholar 

  11. Wiem Haj Ahmed NB, Briot A, Ryan BJ, Mercader-Barceló J, Kinsella GK, O’Sullivan J, et al. Novel facet of an old dietary molecule? direct influence of caffeine on glucose and biogenic amine handling by human adipocytes. Molecules. 2021;26:3831.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Xiaoyun He SZ, Sheng Y, Miao T, Xu J, Xu W, Huang K, et al. Chlorogenic acid ameliorates obesity by preventing energy balance shift in high-fat diet induced obese mice. Sci Food Agric. 2021;101:631–7.

    Article  Google Scholar 

  13. Van Schaik L, Kettle C, Rathner JA. Effects of caffeine on brown adipose tissue thermogenesis and metabolic homeostasis: a review. Front Neurosci. 2021;15:1–15.

    Article  Google Scholar 

  14. Kuryłowicz A, Puzianowska-Kuźnicka M. Induction of adipose tissue browning as a strategy to combat obesity. Int J Mol Sci. 2020;21:1–18.

    Article  Google Scholar 

  15. Liu M, Qin J, Cong J, Yang Y. Chlorogenic acids inhibit adipogenesis: implications of Wnt/β-catenin signaling pathway. Int J Endocrinol. 2021;2215274:1–10.

    Google Scholar 

  16. Uner B, Özdemir S, Taş Ç, Özsoy Y, Uner M. Development of lipid nanoparticles for transdermal loteprednol etabonate delivery. J Microencapsul. 2022;39:327–40.

    Article  CAS  PubMed  Google Scholar 

  17. Pardeike J, Hommoss A, Müller RH. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm. 2009;366:170–84.

    Article  CAS  PubMed  Google Scholar 

  18. Chantaburanan T, Teeranachaideekul V, Chantasart D, Jintapattanakit A, Junyaprasert VB. Effect of binary solid lipid matrix of wax and triglyceride on lipid crystallinity, drug-lipid interaction and drug release of ibuprofen-loaded solid lipid nanoparticles (SLN) for dermal delivery. J Colloid Interface Sci. 2017;504:247–56.

    Article  CAS  PubMed  Google Scholar 

  19. Muller RH, Shegokar R, Keck CM. 20 years of lipid nanoparticles (SLN & NLC): present state of development & industrial applications. Curr Drug Discov Technol. 2011;8:207–27.

    Article  PubMed  Google Scholar 

  20. Pan Q, Xu Q, Boylan NJ, Lamb NW, Emmert DG, Yang JC, et al. Corticosteroid-loaded biodegradable nanoparticles for prevention of corneal allograft rejection in rats. J Control Release. 2015;201:32–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zheng X, Zhu J, Zhang X, Cheng V, Zhang Z, Cao J. The modulatory effect of nanocomplexes loaded with EGCG3”Me on intestinal microbiota of high fat diet-induced obesity mice model. J Food Biochem. 2018;42:1–8.

    Article  Google Scholar 

  22. Duarte G, Pereira ALA, Farah A. Chlorogenic acids and other relevant compounds in Brazilian coffees processed by semi-dry and wet post-harvesting methods. Food Chem. 2010;118:851–5.

    Article  CAS  Google Scholar 

  23. Monteiro M, Farah A. Chlorogenic acids in Brazilian Coffea arabica cultivars from various consecutive crops. Food Chem. 2012;134:611–4.

    Article  CAS  Google Scholar 

  24. ICH, Guideline: validation of analytical procedures: textand methodology Q2 (R1). in: E. Harmonization ICo, 2005 (Ed.) 2005.

  25. del Campo G, Berregi I, Caracena R, Zuriarrain J. Quantitative determination of caffeine, formic acid, trigonelline and 5-(hydroxymethyl) furfural in soluble coffees by 1H NMR spectrometry. Talanta. 2010;81:367–71.

    Article  PubMed  Google Scholar 

  26. de Carvalho SM, Noronha CM, Floriani CL, Lino RC, Rocha G, Bellettini IC, et al. Optimization of α-tocopherol loaded solid lipid nanoparticles by central composite design. Ind Crops Prod. 2013;49:278–85.

    Article  Google Scholar 

  27. Malvern Instruments Limited. Achieving high sensitivity at different scatteringangles with different optical configurations. 2014.

  28. Makino K, Ohshima H. Electrophoretic mobility of a colloidal particle with constant surface charge density. Langmuir. 2010;26:18016–9.

    Article  CAS  PubMed  Google Scholar 

  29. Uner B, Ozdemir S, Tas C, Uner M, Ozsoy Y. Loteprednol-loaded nanoformulations for corneal delivery by quality-by-design concepts: optimization, characterization, and anti-inflammatory activity. AAPS J. 2023;24:92.

    CAS  Google Scholar 

  30. Trauer S, Patzelt A, Otberg N, Knorr F, Rozycki C, Balizs G, et al. Permeation of topically applied caffeine through human skin-a comparison of in vivo and in vitro data. Br J Clin Pharmacol. 2009;68:181–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mendonsa NS, Murthy SN, Hashemnejad SM, Kundu S, Zhang F, Repka MA. Development of poloxamer gel formulations via hot-melt extrusion technology. Int J Pharm. 2018;537:122–31.

    Article  CAS  PubMed  Google Scholar 

  32. Mehaya FM, Mohammad AA. Thermostability of bioactive compounds during roasting process of coffee beans. Heliyon. 2020;6:e05508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wu B, Sun X, Gupta HB, Yuan B, Li J, Ge F, et al. Adipose PD-L1 modulates PD-1/PD-L1 checkpoint blockade immunotherapy efficacy in breast cancer. Oncoimmunology. 2018;7:e1500107.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Pydi SP, Jain S, Tung W, Cui Y, Zhu L, Sakamoto W, et al. Adipocyte β-arrestin-2 is essential for maintaining whole body glucose and energy homeostasis. Nat Commun. 2019;10:2936.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jiao Y, Zhang J, Lu L, Xu J, Qin L. The Fto gene regulates the proliferation and differentiation of pre-adipocytes in vitro. Nutrients. 2016;8:102.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kim A-R, Yoon BK, Park H, Seok JW, Choi H, Yu JH, et al. Caffeine inhibits adipogenesis through modulation of mitotic clonal expansion and the AKT/GSK3 pathway in 3T3-L1 adipocytes. BMB Rep. 2016;49:111–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cirera S. Highly efficient method for isolation of total RNA from adipose tissue. BMC Res Notes. 2013;6:472.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wilfinger WW, Mackey K, Chomczynski P. Effect of pH and ionic strength on the spectrophotometric assessment of nucleic acid purity. Biotechniques. 1997;22:478–81.

    Article  Google Scholar 

  39. Cikos S, Bukovská A, Koppel J. Relative quantification of mRNA: comparison of methods currently used for real-time PCR data analysis. BMC Mol Biol. 2007;8:113.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Pirim D, Wang X, Radwan ZH, Niemsiri V, Hokanson JE, Hamman RF, et al. Lipoprotein lipase gene sequencing and plasma lipid profile. J Lipid Res. 2014;55:85–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yang W, Wang J, Ye W, Li X. Quantitative evaluation of PPAR-γ2 Pro12Ala polymorphism with hypertension. Herz. 2018;43:719–27.

    Article  CAS  PubMed  Google Scholar 

  42. Cañueto J, Girós M, Ciria S, Pi-Castán G, Artigas M, García-Dorado J, et al. Clinical, molecular and biochemical characterization of nine Spanish families with Conradi-Hünermann-Happle syndrome: new insights into X-linked dominant chondrodysplasia punctata with a comprehensive review of the literature. Br J Dermatol. 2012;166:830–8.

    Article  PubMed  Google Scholar 

  43. Wu D, Xu J, Yu G, Zhang B, Wang H, Wang C, et al. Expression status of fatty acid synthase (FAS) but not HER2 is correlated with the differentiation grade and prognosis of esophageal carcinoma. Hepatogastroenterology. 2013;60:99–106.

    CAS  PubMed  Google Scholar 

  44. Mohamed IN, Sarhan NR, Eladl MA, El-Remessy AB, El-Sherbiny M. Deletion of Thioredoxin-interacting protein ameliorates high fat diet-induced non-alcoholic steatohepatitis through modulation of Toll-like receptor 2-NLRP3-inflammasome axis: histological and immunohistochemical study. Acta Histochem. 2018;120:242–54.

    Article  CAS  PubMed  Google Scholar 

  45. Magdalena JeszkaSkowron AS, Pyrzyn´ska K, Paz De Peña M. Chlorogenic acids, caffeine content and antioxidant properties of green coffee extracts: influence of green coffee bean preparation. Eur Food Res Technol. 2016;242:1403–9.

    Article  Google Scholar 

  46. García C, García J, López Martín M, Salmerón R. Collinearity: revisiting the variance inflation factor in ridge regression. J Appl Stat. 2015;42:648–61.

    Article  Google Scholar 

  47. Wu S, Yu B, Wu Z, Fang S, Shi B, Yang J. Effect of particle size distribution on the electrochemical performance of micro-sized silicon-based negative materials. RSC Adv. 2018;8:8544–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yuan Y, Gao Y, Zhao J, Mao L. Characterization and stability evaluation of β-carotene nanoemulsions prepared by high pressure homogenization under various emulsifying conditions. Food Res Int. 2008;41:61–8.

    Article  CAS  Google Scholar 

  49. Müller RH, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery–a review of the state of the art. Eur J Pharm Biopharm. 2000;50:161–77.

    Article  PubMed  Google Scholar 

  50. Hamdani J, Moës AJ, Amighi K. Physical and thermal characterisation of Precirol® and Compritol® as lipophilic glycerides used for the preparation of controlled-release matrix pellets. Int J Pharm. 2003;260:47–57.

    Article  CAS  PubMed  Google Scholar 

  51. Freitas C, Müller RH. Stability determination of solid lipid nanoparticles (SLN) in aqueous dispersion after addition of electrolyte. J Microencapsul. 1999;16:59–71.

    Article  CAS  PubMed  Google Scholar 

  52. Tajik N, Tajik M, Mack I, Enck P. The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: a comprehensive review of the literature. Eur J Nutr. 2017;56:2215–44.

    Article  CAS  PubMed  Google Scholar 

  53. Blanchard J, Sawers SJ. Comparative pharmacokinetics of caffeine in young and elderly men. J Pharmacokinet Biopharm. 1983;11:109–26.

    Article  CAS  PubMed  Google Scholar 

  54. Wulff-Pérez M, Torcello-Gómez A, Gálvez-Ruíz M, Martín-Rodríguez A. Stability of emulsions for parenteral feeding: preparation and characterization of o/w nanoemulsions with natural oils and Pluronic f68 as surfactant. Food Hydrocolloids. 2009;23:1096–102.

    Article  Google Scholar 

  55. Singh AK, Singla RK, Pandey AK. Chlorogenic acid: a dietary phenolic acid with promising pharmacotherapeutic potential. Curr Med Chem. 2023;30:3905–3926.

    Article  CAS  PubMed  Google Scholar 

  56. Puglia C, Offerta A, Tirendi GG, Tarico MS, Curreri S, Bonina F, et al. Design of solid lipid nanoparticles for caffeine topical administration. Drug Deliv. 2016;23:36–40.

    Article  CAS  PubMed  Google Scholar 

  57. Michalchuk AAL, Tumanov IA, Boldyreva EV. The effect of ball mass on the mechanochemical transformation of a single-component organic system: anhydrous caffeine. J Mater Sci. 2018;53:13380–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Daurio D, Medina C, Saw R, Nagapudi K, Alvarez-Núñez F. Application of twin screw extrusion in the manufacture of cocrystals, part I: four case studies. Pharmaceutics. 2011;3:582–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Alvarez-Parrilla E, Rosa LADL, Torres-Rivas F, Rodrigo-Garcia J, González-Aguilar GA. Complexation of apple antioxidants: chlorogenic acid, quercetin and rutin by β-cyclodextrin (β-CD). J Inclus Phenom Macrocyclic Chem. 2005;53:121–9.

    Article  CAS  Google Scholar 

  60. Pinto SS, Diogo HP. Thermochemical study of two anhydrous polymorphs of caffeine. J Chem Thermodyn. 2006;38:1515–22.

    Article  CAS  Google Scholar 

  61. Zhang C, Yu X, Diao Y, Jing Y. Functionalization of carboxymethyl chitosan with chlorogenic acid: preparation, characterization, and antioxidant capacity. Iran Polym J. 2021;30:81–91.

    Article  Google Scholar 

  62. Martins IJ. Caffeine consumption and induction of obesity in the developed world. Ann Obes Disord. 2017;2:1018–1022.

    Google Scholar 

  63. Sahagun DO, M´arquez-Aguirre AL, Quintero-Fabi´an S, L´opez-Roa RI, Rojas-Mayorqu´ın AE. Modulation of PPAR-γ by nutraceutics as complementary treatment for obesity-related disorders and inflammatory diseases. PPAR Res. 2012;318613:1–15.

    Article  Google Scholar 

  64. Vasileva LV, Savova MS, Amirova KM, Balcheva-Sivenova Z, Ferrante C, et al. Caffeic and chlorogenic acids synergistically activate browning program in human adipocytes: implications of AMPK- and PPAR-mediated pathways. Int J Mol Sci. 2020;21:1–16.

    Article  Google Scholar 

  65. Grzelczyk J, Budryn G, PérezSánchez H. Evaluation of affinity of bioactive isolates from various coffee extracts through binding with PPARγ with the use of isothermal titration calorimetry and docking simulation to prevent antidiabetic effects. J Therm Anal Calorim. 2020;142:877–87.

    Article  CAS  Google Scholar 

  66. Kusumah J, de Mejia EG. Coffee constituents with antiadipogenic and antidiabetic potentials: a narrative review. Food Chem Toxicol. 2022;161:112821.

    Article  CAS  PubMed  Google Scholar 

  67. Hosseinabadi S, Rafraf, M, Mahmoodzadeh, A, Asghari-Jafarabadi, M, Asghari S. Effects of green coffee extract supplementation on glycemic indexes, leptin, and obesity values in patients with non-alcoholic fatty liver disease. J Herb Med. 2020;22.

  68. Haidari F, Samadi M, Mohammadshahi M, Jalali MT, Engali KA. Energy restriction combined with green coffee bean extract affects serum adipocytokines and the body composition in obese women. Asia Pac J Clin Nutr. 2017;26:1048–54.

    CAS  PubMed  Google Scholar 

  69. Budryn G, Zakłos-Szyda M, Zaczyn´ska D, Z˙ yz˙elewicz D, Grzelczyk J, Zdun´czyk Z, et al. Green and roasted coffee extracts as antioxidants in βTC3 cells with induced oxidative stress and lipid accumulation inhibitors in 3T3L1 cells, and their bioactivity in rats fed high fat diet. Eur Food Res Technol. 2017;243:1323–34.

    Article  CAS  Google Scholar 

  70. Choi BK, Park SB, Lee DR, Lee HJ, Jin YY, Yang SH, et al. Green coffee bean extract improves obesity by decreasing body fat in high-fat diet-induced obese mice. Asian Pac J Trop Med. 2016;9:365–43.

    Article  Google Scholar 

  71. Aoyagi R, Funakoshi-Tago M, Fujiwara Y, Tamura H. Coffee inhibits adipocyte differentiation via inactivation of PPARγ. Biol Pharm Bull. 2014;37:1820–5.

    Article  CAS  PubMed  Google Scholar 

  72. Sugiura C, Zheng G, Liu L, Sayama K. Catechins and caffeine promote lipid metabolism and heat production through the transformation of differentiated 3T3-L1 adipocytes from white to beige adipocytes. J Food Sci. 2020;85:192–200.

    Article  CAS  PubMed  Google Scholar 

  73. Marion-Letellier R, Savoye G, Ghosh S. Fatty acids, eicosanoids and PPAR gamma. Eur J Pharmacol. 2016;785:44–9.

    Article  CAS  PubMed  Google Scholar 

  74. Singh AK, Singla RK, Pandey AK. Chlorogenic acid: a dietary phenolic acid with promising pharmacotherapeutic potential. Curr Med Chem. 2023;30:3905–26.

    Article  CAS  PubMed  Google Scholar 

  75. Maki C, Funakoshi-Tago M, Aoyagi R, Ueda F, Kimura M, Kobata K, et al. Coffee extract inhibits adipogenesis in 3T3-L1 preadipocyes by interrupting insulin signaling through the downregulation of IRS1. PLoS One. 2017;12:e0173264.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Olofsson LE, Orho-Melander M, William-Olsson L, Sjoholm K, Sjostrom L, Groop L, et al. CCAAT/enhancer binding protein (C/EBP) in adipose tissue regulates genes in lipid and glucose metabolism and a genetic variation in C/EBP is associated with serum levels of triglycerides. J Clin Endocrinol Metab. 2008;93:4880–6.

    Article  CAS  PubMed  Google Scholar 

  77. Luedde T, Duderstadt M, Streetz KL, Tacke F, Kubicka S, Manns MP, et al. C/EBP ? isoforms LIP and LAP modulate progression of the cell cycle in the regenerating mouse liver. Hepatology. 2004;40:356–65.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Introduction: BU and MSMC; Materials: BU and MSMC; Design experiment of SLN: BU; Characterization studies: BU and MSMC; ELISA and cell experiment: BU and MSMC; Conclusion: BU and MSMC.

Corresponding author

Correspondence to Burcu Uner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uner, B., Macit Celebi, M.S. Anti-obesity effects of chlorogenic acid and caffeine- lipid nanoparticles through PPAR-γ/C/EBP-ɑ pathways. Int J Obes 47, 1108–1119 (2023). https://doi.org/10.1038/s41366-023-01365-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-023-01365-7

Search

Quick links