Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Clinical Research

Effect of exercise training on insulin-stimulated glucose disposal: a systematic review and meta-analysis of randomized controlled trials

Abstract

Background and objective

The effect of exercise training on whole-body insulin sensitivity has not been systematically summarized. We aimed to summarize the data from randomized controlled trials evaluating the effect of exercise training on insulin action, in adults.

Subjects

MEDLINE, EMBASE, and CENTRAL databases were searched until January 2021. Randomized controlled trials lasting ≥4 weeks, including adults, and evaluating the effect of exercise on insulin-stimulated glucose disposal measured using the hyperinsulinemic euglycemic clamp, were included.

Methods

Three reviewers extracted summary data from published trials. The primary outcome was insulin-stimulated glucose disposal. Standardized weighted mean differences (SMD) in glucose disposal between intervention and control were compared. The PEDro scale was used to assess risk of bias.

Results

We included 25 trials (36 interventions, N = 851). Exercise increased insulin-stimulated glucose disposal relative to control, SMD = 0.52 (95% confidence interval [CI]: 0.39, 0.65; p < 0.001; I2 = 47%) without significantly suppressing hepatic glucose production. In trials without isotopic tracers, exercise increased glucose disposal (SMD = 0.63; 95% CI: 0.48, 0.77; p < 0.001, I2 = 55%). In trials with isotopic tracers, exercise increased glucose disposal only when tracers were added to the exogenous glucose used for clamping (SMD = 0.34; 95% CI: 0.03, 0.66, p = 0.034. I2 = 0%). In a meta-regression model including aerobic exercise, weight change, and tracer technique, only percent weight change explained between trial heterogeneity (β = 0.069; 95% CI: 0.005, 0.013). The PEDro rating indicated relatively low risk of bias (5.8 ± 0.22).

Conclusions

Exercise training for at least four weeks significantly increases insulin-stimulated glucose disposal. Weight loss maximizes the effect and may be needed to improve hepatic insulin sensitivity. Differences in tracer methodology contribute to divergent outcomes and should be considered when assessing conclusions from research examining the effect of exercise on insulin action.

Registration

PROSPERO (CRD42019124381).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PRISMA 2020 flow chart.
Fig. 2: Forest Plot of Exercise-induced Change in Glucose Disposal.
Fig. 3: Forest Plot of the Exercise-induced Change in Glucose Disposal in the Sub-group Analysis.

Similar content being viewed by others

Data availability

The protocol for the study (CRD42019124381) is publicly available at: https://www.crd.york.ac.uk/prospero/. The datasets generated and analyzed during the current study are not publicly available but are available from the corresponding author on reasonable request.

References

  1. DeFronzo RA, Jacot E, Jequier E, Maeder E, Wahren J, Felber JP.The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization.Diabetes. 1981;30:1000–7.

    Article  CAS  PubMed  Google Scholar 

  2. Mitrakou A, Kelley D, Veneman T, Jenssen T, Pangburn T, Reilly J, et al. Contribution of abnormal muscle and liver glucose metabolism to postprandial hyperglycemia in NIDDM. Diabetes. 1990;39:1381–90.

    Article  CAS  PubMed  Google Scholar 

  3. Petersen MC, Shulman GI. Mechanisms of insulin action and insulin resistance. Physiol Rev. 2018;98:2133–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gastaldelli A, Ferrannini E, Miyazaki Y, Matsuda M, DeFronzo RA. San Antonio metabolisms. Beta-cell dysfunction and glucose intolerance: results from the San Antonio metabolism (SAM) study. Diabetologia. 2004;47:31–9.

    Article  CAS  PubMed  Google Scholar 

  5. Smith GI, Polidori DC, Yoshino M, Kearney ML, Patterson BW, Mittendorfer B, et al. Influence of adiposity, insulin resistance, and intrahepatic triglyceride content on insulin kinetics. J Clin Invest. 2020;130:3305–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sylow L, Tokarz VL, Richter EA, Klip A. The many actions of insulin in skeletal muscle, the paramount tissue determining glycemia. Cell Metab. 2021;33:758–80.

    Article  CAS  PubMed  Google Scholar 

  7. DiMenna FJ, Arad AD. Exercise as ‘precision medicine’ for insulin resistance and its progression to type 2 diabetes: a research review. BMC Sports Sci Med Rehabil. 2018;10:21.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ross R. Does exercise without weight loss improve insulin sensitivity? Diabetes Care. 2003;26:944–5.

    Article  PubMed  Google Scholar 

  9. O’Gorman DJ, Karlsson HK, McQuaid S, Yousif O, Rahman Y, Gasparro D, et al. Exercise training increases insulin-stimulated glucose disposal and GLUT4 (SLC2A4) protein content in patients with type 2 diabetes. Diabetologia. 2006;49:2983–92.

    Article  PubMed  Google Scholar 

  10. Sigal RJ, Kenny GP, Wasserman DH, Castaneda-Sceppa C. Physical activity/exercise and type 2 diabetes. Diabetes Care. 2004;27:2518–39.

    Article  PubMed  Google Scholar 

  11. Maarbjerg SJ, Sylow L, Richter EA. Current understanding of increased insulin sensitivity after exercise - emerging candidates. Acta Physiol (Oxf). 2011;202:323–35.

    Article  CAS  PubMed  Google Scholar 

  12. Mikines KJ, Sonne B, Farrell PA, Tronier B, Galbo H. Effect of training on the dose-response relationship for insulin action in men. J Appl Physiol (1985). 1989;66:695–703.

    Article  CAS  PubMed  Google Scholar 

  13. Boule NG, Haddad E, Kenny GP, Wells GA, Sigal RJ. Effects of exercise on glycemic control and body mass in type 2 diabetes mellitus: a meta-analysis of controlled clinical trials. JAMA. 2001;286:1218–27.

    Article  CAS  PubMed  Google Scholar 

  14. Fatone C, Guescini M, Balducci S, Battistoni S, Settequattrini A, Pippi R, et al. Two weekly sessions of combined aerobic and resistance exercise are sufficient to provide beneficial effects in subjects with Type 2 diabetes mellitus and metabolic syndrome. J Endocrinol Invest. 2010;33:489–95.

    Article  CAS  PubMed  Google Scholar 

  15. Kanaley JA, Colberg SR, Corcoran MH, Malin SK, Rodriguez NR, Crespo CJ, et al. Exercise/physical activity in individuals with type 2 diabetes: a consensus statement from the American College of Sports Medicine. Med Sci Sports Exerc. 2022;54:353–68.

    Article  PubMed  PubMed Central  Google Scholar 

  16. DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol. 1979;237:E214–23.

    CAS  PubMed  Google Scholar 

  17. Finegood DT, Bergman RN, Vranic M. Modeling error and apparent isotope discrimination confound estimation of endogenous glucose production during euglycemic glucose clamps. Diabetes. 1988;37:1025–34.

    Article  CAS  PubMed  Google Scholar 

  18. Engin B, Willis SA, Malaikah S, Sargeant JA, Yates T, Gray LJ, et al. The effect of exercise training on adipose tissue insulin sensitivity: a systematic review and meta-analysis. Obes Rev. 2022;23:e13445.

    Article  CAS  PubMed  Google Scholar 

  19. Medicine ACoS. ACSM’s Guidelines for Exercise Testing and Prescription. Philadelphia: Lippincott Williams & Wilkins; 2021.

    Google Scholar 

  20. Livingston EH, Lee S. Body surface area prediction in normal-weight and obese patients. Am J Physiol Endocrinol Metab. 2001;281:E586–91.

    Article  CAS  PubMed  Google Scholar 

  21. Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther. 2003;83:713–21.

    Article  PubMed  Google Scholar 

  22. Cashin AG, McAuley JH. Clinimetrics: Physiotherapy Evidence Database (PEDro) Scale. J Physiother. 2020;66:59.

    Article  PubMed  Google Scholar 

  23. Morris SB, DeShon RP. Combining effect size estimates in meta-analysis with repeated measures and independent-groups designs. Psychol Methods. 2002;7:105–25.

    Article  PubMed  Google Scholar 

  24. Lipsey MW, Wilson DB. Practical Meta-Analysis vol. 49. Sage Publications: California, 2001.

  25. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–60.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50:1088–101.

    Article  CAS  PubMed  Google Scholar 

  27. Hedges LV, Higgins JPT, Rothstein HR, Borenstein M. Introduction to Meta-Analysis, First edn Wiley: New Jersey, 2009.

  28. Marcus RL, Lastayo PC, Dibble LE, Hill L, McClain DA. Increased strength and physical performance with eccentric training in women with impaired glucose tolerance: a pilot study. J Womens Health (Larchmt). 2009;18:253–60.

    Article  PubMed  Google Scholar 

  29. Joseph LJ, Trappe TA, Farrell PA, Campbell WW, Yarasheski KE, Lambert CP, et al. Short-term moderate weight loss and resistance training do not affect insulin-stimulated glucose disposal in postmenopausal women. Diabetes Care. 2001;24:1863–9.

    Article  CAS  PubMed  Google Scholar 

  30. Wagner H, Degerblad M, Thorell A, Nygren J, Stahle A, Kuhl J, et al. Combined treatment with exercise training and acarbose improves metabolic control and cardiovascular risk factor profile in subjects with mild type 2 diabetes. Diabetes Care. 2006;29:1471–7.

    Article  CAS  PubMed  Google Scholar 

  31. Andersson A, Sjodin A, Olsson R, Vessby B. Effects of physical exercise on phospholipid fatty acid composition in skeletal muscle. Am J Physiol. 1998;274:E432–8.

    CAS  PubMed  Google Scholar 

  32. Shojaee-Moradie F, Baynes KC, Pentecost C, Bell JD, Thomas EL, Jackson NC, et al. Exercise training reduces fatty acid availability and improves the insulin sensitivity of glucose metabolism. Diabetologia. 2007;50:404–13.

    Article  CAS  PubMed  Google Scholar 

  33. Stener-Victorin E, Baghaei F, Holm G, Janson PO, Olivecrona G, Lonn M, et al. Effects of acupuncture and exercise on insulin sensitivity, adipose tissue characteristics, and markers of coagulation and fibrinolysis in women with polycystic ovary syndrome: secondary analyses of a randomized controlled trial. Fertil Steril. 2012;97:501–8.

    Article  CAS  PubMed  Google Scholar 

  34. Christensen B, Nellemann B, Larsen MS, Thams L, Sieljacks P, Vestergaard PF, et al. Whole body metabolic effects of prolonged endurance training in combination with erythropoietin treatment in humans: a randomized placebo controlled trial. Am J Physiol Endocrinol Metab. 2013;305:E879–89.

    Article  CAS  PubMed  Google Scholar 

  35. Otten J, Stomby A, Waling M, Isaksson A, Soderstrom I, Ryberg M, et al. A heterogeneous response of liver and skeletal muscle fat to the combination of a Paleolithic diet and exercise in obese individuals with type 2 diabetes: a randomised controlled trial. Diabetologia. 2018;61:1548–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Baker LD, Frank LL, Foster-Schubert K, Green PS, Wilkinson CW, McTiernan A, et al. Aerobic exercise improves cognition for older adults with glucose intolerance, a risk factor for Alzheimer’s disease. J Alzheimers Dis. 2010;22:569–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Arad AD, DiMenna FJ, Thomas N, Tamis-Holland J, Weil R, Geliebter A, et al. High-intensity interval training without weight loss improves exercise but not basal or insulin-induced metabolism in overweight/obese African American women. J Appl Physiol (1985). 2015;119:352–62.

    Article  PubMed  Google Scholar 

  38. Snel M, Gastaldelli A, Ouwens DM, Hesselink MK, Schaart G, Buzzigoli E, et al. Effects of adding exercise to a 16-week very low-calorie diet in obese, insulin-dependent type 2 diabetes mellitus patients. J Clin Endocrinol Metab. 2012;97:2512–20.

    Article  CAS  PubMed  Google Scholar 

  39. Brochu M, Malita MF, Messier V, Doucet E, Strychar I, Lavoie JM, et al. Resistance training does not contribute to improving the metabolic profile after a 6-month weight loss program in overweight and obese postmenopausal women. J Clin Endocrinol Metab. 2009;94:3226–33.

    Article  CAS  PubMed  Google Scholar 

  40. Bogardus C, Ravussin E, Robbins DC, Wolfe RR, Horton ES, Sims EA. Effects of physical training and diet therapy on carbohydrate metabolism in patients with glucose intolerance and non-insulin-dependent diabetes mellitus. Diabetes. 1984;33:311–8.

    Article  CAS  PubMed  Google Scholar 

  41. Yarasheski KE, Cade WT, Overton ET, Mondy KE, Hubert S, Laciny E, et al. Exercise training augments the peripheral insulin-sensitizing effects of pioglitazone in HIV-infected adults with insulin resistance and central adiposity. Am J Physiol Endocrinol Metab. 2011;300:E243–51.

    Article  CAS  PubMed  Google Scholar 

  42. Dengel DR, Pratley RE, Hagberg JM, Rogus EM, Goldberg AP. Distinct effects of aerobic exercise training and weight loss on glucose homeostasis in obese sedentary men. J Appl Physiol (1985). 1996;81:318–25.

    Article  CAS  PubMed  Google Scholar 

  43. Coker RH, Hays NP, Williams RH, Brown AD, Freeling SA, Kortebein PM, et al. Exercise-induced changes in insulin action and glycogen metabolism in elderly adults. Med Sci Sports Exerc. 2006;38:433–8.

    Article  CAS  PubMed  Google Scholar 

  44. DiPietro L, Dziura J, Yeckel CW, Neufer PD. Exercise and improved insulin sensitivity in older women: evidence of the enduring benefits of higher intensity training. J Appl Physiol (1985). 2006;100:142–9.

    Article  CAS  PubMed  Google Scholar 

  45. Reichkendler MH, Rosenkilde M, Auerbach PL, Agerschou J, Nielsen MB, Kjaer A, et al. Only minor additional metabolic health benefits of high as opposed to moderate dose physical exercise in young, moderately overweight men. Obesity (Silver Spring). 2014;22:1220–32.

    Article  CAS  PubMed  Google Scholar 

  46. Poehlman ET, Dvorak RV, DeNino WF, Brochu M, Ades PA. Effects of resistance training and endurance training on insulin sensitivity in nonobese, young women: a controlled randomized trial. J Clin Endocrinol Metab. 2000;85:2463–8.

    CAS  PubMed  Google Scholar 

  47. Cuff DJ, Meneilly GS, Martin A, Ignaszewski A, Tildesley HD, Frohlich JJ. Effective exercise modality to reduce insulin resistance in women with type 2 diabetes. Diabetes Care. 2003;26:2977–82.

    Article  PubMed  Google Scholar 

  48. Coker RH, Williams RH, Yeo SE, Kortebein PM, Bodenner DL, Kern PA, et al. The impact of exercise training compared to caloric restriction on hepatic and peripheral insulin resistance in obesity. J Clin Endocrinol Metab. 2009;94:4258–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ross R, Janssen I, Dawson J, Kungl AM, Kuk JL, Wong SL, et al. Exercise-induced reduction in obesity and insulin resistance in women: a randomized controlled trial. Obes Res. 2004;12:789–98.

    Article  PubMed  Google Scholar 

  50. Ross R, Dagnone D, Jones PJ, Smith H, Paddags A, Hudson R, et al. Reduction in obesity and related comorbid conditions after diet-induced weight loss or exercise-induced weight loss in men. A randomized, controlled trial. Ann Intern Med. 2000;133:92–103.

    Article  CAS  PubMed  Google Scholar 

  51. Nordby P, Auerbach PL, Rosenkilde M, Kristiansen L, Thomasen JR, Rygaard L, et al. Endurance training per se increases metabolic health in young, moderately overweight men. Obesity (Silver Spring). 2012;20:2202–12.

    Article  CAS  PubMed  Google Scholar 

  52. Davidson LE, Hudson R, Kilpatrick K, Kuk JL, McMillan K, Janiszewski PM, et al. Effects of exercise modality on insulin resistance and functional limitation in older adults: a randomized controlled trial. Arch Intern Med. 2009;169:122–31.

    Article  PubMed  Google Scholar 

  53. Richter EA, Garetto LP, Goodman MN, Ruderman NB. Enhanced muscle glucose metabolism after exercise: modulation by local factors. Am J Physiol. 1984;246:E476–82.

    CAS  PubMed  Google Scholar 

  54. Wojtaszewski JF, Hansen BF, Gade, Kiens B, Markuns JF, Goodyear LJ, et al. Insulin signaling and insulin sensitivity after exercise in human skeletal muscle. Diabetes. 2000;49:325–31.

    Article  CAS  PubMed  Google Scholar 

  55. Sjoberg KA, Frosig C, Kjobsted R, Sylow L, Kleinert M, Betik AC, et al. Exercise increases human skeletal muscle insulin sensitivity via coordinated increases in microvascular perfusion and molecular signaling. Diabetes. 2017;66:1501–10.

    Article  CAS  PubMed  Google Scholar 

  56. Miinea CP, Sano H, Kane S, Sano E, Fukuda M, Peranen J, et al. AS160, the Akt substrate regulating GLUT4 translocation, has a functional Rab GTPase-activating protein domain. Biochem J. 2005;391:87–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Richter EA, Sylow L, Hargreaves M. Interactions between insulin and exercise. Biochem J. 2021;478:3827–46.

    Article  CAS  PubMed  Google Scholar 

  58. Prior SJ, Goldberg AP, Ortmeyer HK, Chin ER, Chen D, Blumenthal JB, et al. Increased skeletal muscle capillarization independently enhances insulin sensitivity in older adults after exercise training and detraining. Diabetes. 2015;64:3386–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. De Glisezinski I, Crampes F, Harant I, Berlan M, Hejnova J, Langin D, et al. Endurance training changes in lipolytic responsiveness of obese adipose tissue. Am J Physiol. 1998;275:E951–6.

    PubMed  Google Scholar 

  60. Ziogas GG, Thomas TR, Harris WS. Exercise training, postprandial hypertriglyceridemia, and LDL subfraction distribution. Med Sci Sports Exerc. 1997;29:986–91.

    Article  CAS  PubMed  Google Scholar 

  61. Ryan BJ, Schleh MW, Ahn C, Ludzki AC, Gillen JB, Varshney P, et al. Moderate-intensity exercise and high-intensity interval training affect insulin sensitivity similarly in obese adults. J Clin Endocrinol Metab. 2020;105.e2941-59.

  62. Winn NC, Liu Y, Rector RS, Parks EJ, Ibdah JA, Kanaley JA. Energy-matched moderate and high intensity exercise training improves nonalcoholic fatty liver disease risk independent of changes in body mass or abdominal adiposity - a randomized trial. Metabolism. 2018;78:128–40.

    Article  CAS  PubMed  Google Scholar 

  63. Magkos F, Fraterrigo G, Yoshino J, Luecking C, Kirbach K, Kelly SC, et al. Effects of moderate and subsequent progressive weight loss on metabolic function and adipose tissue biology in humans with obesity. Cell Metab. 2016;23:591–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Petersen KF, Dufour S, Befroy D, Lehrke M, Hendler RE, Shulman GI. Reversal of nonalcoholic hepatic steatosis, hepatic insulin resistance, and hyperglycemia by moderate weight reduction in patients with type 2 diabetes. Diabetes. 2005;54:603–8.

    Article  CAS  PubMed  Google Scholar 

  65. Solomon TP, Haus JM, Kelly KR, Cook MD, Filion J, Rocco M, et al. A low-glycemic index diet combined with exercise reduces insulin resistance, postprandial hyperinsulinemia, and glucose-dependent insulinotropic polypeptide responses in obese, prediabetic humans. Am J Clin Nutr. 2010;92:1359–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Solomon TP, Haus JM, Kelly KR, Cook MD, Riccardi M, Rocco M, et al. Randomized trial on the effects of a 7-d low-glycemic diet and exercise intervention on insulin resistance in older obese humans. Am J Clin Nutr. 2009;90:1222–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a grant from the National Institute on Aging (5K99AG065419-02), the National Cancer Institute (R00 CA218603), the National Institute of General Medical Sciences which funds the Louisiana Clinical and Translational Science Center (U54 GM104940), and the National Institute of Diabetes and Digestive and Kidney Diseases (T32 DK064584) of the National Institutes of Health. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Funding

National Institute on Aging.

Author information

Authors and Affiliations

Authors

Contributions

CJR: conceptualization of research question, methodology, screening and extraction of data, interpretation of data, writing—original draft preparation, review and editing; DZ: Analysis and interpretation of data, and writing—review and editing; JPK; interpretation of data, and writing—review and editing ACL: screening and extraction of data, interpretation of data, writing—review and editing CJE: screening and extraction of data, interpretation of data, writing—review and editing; CLK: methodology, writing—review and editing; LCS: methodology, writing—review and editing; FLG: interpretation, writing—review and editing; WDJ: analysis and interpretation of data, writing—review and editing; JCB: conceptualization of research question, methodology, analysis and interpretation of data, writing—review and editing.

Corresponding author

Correspondence to Candida J. Rebello.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rebello, C.J., Zhang, D., Kirwan, J.P. et al. Effect of exercise training on insulin-stimulated glucose disposal: a systematic review and meta-analysis of randomized controlled trials. Int J Obes 47, 348–357 (2023). https://doi.org/10.1038/s41366-023-01283-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-023-01283-8

Search

Quick links