Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Epidemiology and Population Health

Birth weight, childhood body mass index, and risk of diverticular disease in adulthood

Abstract

Objective

Adult overweight is associated with increased risk of diverticular disease (DD). We investigated associations between birthweight and childhood body mass index (BMI) and DD.

Methods

Cohort study of 346,586 persons born during 1930–1996 with records in the Copenhagen School Health Records Register. Data included birthweight, and height and weight from ages 7 through 13. We used Cox proportional hazard regression to examine associations between birthweight and BMI z-scores and DD registered in the Danish National Patient Registry. Due to non-proportionality, we followed participants from age 18–49 and from age 50.

Results

During follow-up, 5459 (3.2%) women and 4429 (2.5%) men had DD. For low and high BMI in childhood, we observed a higher risk of DD before age 50. Among women with z-scores <0 at age 13, the hazard ratio (HR) was 1.16 [95% confidence interval (CI): 0.98–1.39] per one-point lower z-score. For z-scores ≥0 at age 13, the HR was 1.30 (95% CI: 1.11–1.51) per one-point higher z-score. Among men with z-scores <0 at age 13, the HR was 1.02 (95% CI: 0.85–1.22). For z-scores ≥0 at age 13, the HR was 1.54 (95% CI: 1.34–1.78). Z-scores ≥0 were not associated with DD after age 50. Among women only, birthweight was inversely associated with DD before age 50 [HR = 0.90 (95% CI: 0.83–0.99) per 500 g higher birthweight].

Conclusion

BMI z-scores below and above zero in childhood were associated with higher risk of DD before age 50. In addition, we observed lower risk of DD among women, the higher their birthweight.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: Association between BMI z-scores at ages 7 and 13 years and DD among women younger than 50 years, fitted by restricted cubic splines.
Fig. 3: Association between BMI z-score at ages 7 and 13 years and DD among men younger than 50 years, fitted by restricted cubic splines.

Similar content being viewed by others

Data availability

To comply with Danish and European regulations on data protection, data used in this study will not be made publicly available.

References

  1. Strate LL, Morris AM. Epidemiology, pathophysiology, and treatment of diverticulitis. Gastroenterology. 2019;156:1282–98.e1.

    Article  PubMed  Google Scholar 

  2. Feuerstein JD, Falchuk KR. Diverticulosis and diverticulitis. Mayo Clin Proc. 2016;91:1094–104.

    Article  PubMed  Google Scholar 

  3. Peery AF, Crockett SD, Murphy CC, Lund JL, Dellon ES, Williams JL, et al. Burden and cost of gastrointestinal, liver, and pancreatic diseases in the United States: update 2018. Gastroenterology. 2019;156:254–72.e11.

    Article  PubMed  Google Scholar 

  4. Etzioni DA, Mack TM, Beart RW Jr, Kaiser AM. Diverticulitis in the United States: 1998-2005: changing patterns of disease and treatment. Ann Surg. 2009;249:210–7.

    Article  PubMed  Google Scholar 

  5. Wheat CL, Strate LL. Trends in hospitalization for diverticulitis and diverticular bleeding in the United States from 2000 to 2010. Clin Gastroenterol Hepatol. 2016;14:96–103.e1.

    Article  PubMed  Google Scholar 

  6. Bharucha AE, Parthasarathy G, Ditah I, Fletcher JG, Ewelukwa O, Pendlimari R, et al. Temporal trends in the incidence and natural history of diverticulitis: a population-based study. Am J Gastroenterol. 2015;110:1589–96.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Peery AF, Crockett SD, Barritt AS, Dellon ES, Eluri S, Gangarosa LM, et al. Burden of gastrointestinal, liver, and pancreatic diseases in the United States. Gastroenterology. 2015;149:1731–41.e3.

    Article  PubMed  Google Scholar 

  8. Yuan S, Larsson SC. Genetically predicted adiposity, diabetes, and lifestyle factors in relation to diverticular disease. Clin Gastroenterol Hepatol. 2021;20:1077–84.

    Article  PubMed  Google Scholar 

  9. Yamamichi N, Shimamoto T, Takahashi Y, Sakaguchi Y, Kakimoto H, Matsuda R, et al. Trend and risk factors of diverticulosis in Japan: age, gender, and lifestyle/metabolic-related factors may cooperatively affect on the colorectal diverticula formation. PLoS ONE. 2015;10:e0123688.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Liu PH, Cao Y, Keeley BR, Tam I, Wu K, Strate LL, et al. Adherence to a healthy lifestyle is associated with a lower risk of diverticulitis among men. Am J Gastroenterol. 2017;112:1868–76.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Strate LL, Liu YL, Aldoori WH, Syngal S, Giovannucci EL. Obesity increases the risks of diverticulitis and diverticular bleeding. Gastroenterology. 2009;136:115–22.e1.

    Article  PubMed  Google Scholar 

  12. Ma W, Jovani M, Liu PH, Nguyen LH, Cao Y, Tam I, et al. Association between obesity and weight change and risk of diverticulitis in women. Gastroenterology. 2018;155:58–66.e4.

    Article  PubMed  Google Scholar 

  13. Lee TH, Setty PT, Parthasarathy G, Bailey KR, Wood-Wentz CM, Fletcher JG, et al. Aging, obesity, and the incidence of diverticulitis: a population-based study. Mayo Clin Proc. 2018;93:1256–65.

    Article  PubMed  Google Scholar 

  14. Peery AF, Keil A, Jicha K, Galanko JA, Sandler RS. Association of obesity with colonic diverticulosis in women. Clin Gastroenterol Hepatol. 2020;18:107–14.e1.

    Article  PubMed  Google Scholar 

  15. Rosemar A, Angerås U, Rosengren A. Body mass index and diverticular disease: a 28-year follow-up study in men. Dis Colon Rectum. 2008;51:450–5.

    Article  PubMed  Google Scholar 

  16. Hjern F, Wolk A, Håkansson N. Obesity, physical inactivity, and colonic diverticular disease requiring hospitalization in women: a prospective cohort study. Am J Gastroenterol. 2012;107:296–302.

  17. Korda RJ, Liu B, Clements MS, Bauman AE, Jorm LR, Bambrick HJ, et al. Prospective cohort study of body mass index and the risk of hospitalisation: findings from 246361 participants in the 45 and Up Study. Int J Obes. 2013;37:790–9.

    Article  CAS  Google Scholar 

  18. Jamal Talabani A, Lydersen S, Ness-Jensen E, Endreseth BH, Edna TH. Risk factors of admission for acute colonic diverticulitis in a population-based cohort study: the North Trondelag Health Study, Norway. World J Gastroenterol. 2016;22:10663–72.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Aune D, Sen A, Leitzmann MF, Norat T, Tonstad S, Vatten LJ. Body mass index and physical activity and the risk of diverticular disease: a systematic review and meta-analysis of prospective studies. Eur J Nutr. 2017;56:2423–38.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Järbrink-Sehgal ME, Schmidt PT, Sköldberg F, Hemmingsson T, Hagström H, Andreasson A. Lifestyle factors in late adolescence associate with later development of diverticular disease requiring hospitalization. Clin Gastroenterol Hepatol. 2018;16:1474–80.e1.

    Article  PubMed  Google Scholar 

  21. Viner RM, Ross D, Hardy R, Kuh D, Power C, Johnson A, et al. Life course epidemiology: recognising the importance of adolescence. J Epidemiol Community Health. 2015;69:719–20.

    Article  PubMed  Google Scholar 

  22. Barton M. Childhood obesity: a life-long health risk. Acta Pharmacol Sin. 2012;33:189–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Guo SS, Wu W, Chumlea WC, Roche AF. Predicting overweight and obesity in adulthood from body mass index values in childhood and adolescence. Am J Clin Nutr. 2002;76:653–8.

    Article  CAS  PubMed  Google Scholar 

  24. Raghuveer G. Lifetime cardiovascular risk of childhood obesity. Am J Clin Nutr. 2010;91:1514s–19s.

    Article  PubMed  Google Scholar 

  25. Whincup PH, Kaye SJ, Owen CG, Huxley R, Cook DG, Anazawa S, et al. Birth weight and risk of type 2 diabetes: a systematic review. JAMA. 2008;300:2886–97.

    Article  CAS  PubMed  Google Scholar 

  26. Lawlor DA, Ronalds G, Clark H, Smith GD, Leon DA. Birth weight is inversely associated with incident coronary heart disease and stroke among individuals born in the 1950s: findings from the Aberdeen Children of the 1950s prospective cohort study. Circulation. 2005;112:1414–8.

    Article  PubMed  Google Scholar 

  27. McDade TW, Metzger MW, Chyu L, Duncan GJ, Garfield C, Adam EK. Long-term effects of birth weight and breastfeeding duration on inflammation in early adulthood. Proc Biol Sci. 2014;281:20133116.

    PubMed  PubMed Central  Google Scholar 

  28. Smith NR, Jensen BW, Zimmermann E, Gamborg M, Sørensen TIA, Baker JL. Associations between birth weight and colon and rectal cancer risk in adulthood. Cancer Epidemiol. 2016;42:181–5.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Baker JL, Olsen LW, Andersen I, Pearson S, Hansen B, Sørensen T. Cohort profile: the Copenhagen School Health Records Register. Int J Epidemiol. 2009;38:656–62.

    Article  PubMed  Google Scholar 

  30. Bjerregaard LG, Jensen BW, Ängquist L, Osler M, Sørensen TIA, Baker JL. Change in overweight from childhood to early adulthood and risk of type 2 diabetes. N Engl J Med. 2018;378:1302–12.

    Article  PubMed  Google Scholar 

  31. Gjærde LK, Gamborg M, Ängquist L, Truelsen TC, Sørensen TIA, Baker JL. Association of childhood body mass index and change in body mass index with first adult ischemic stroke. JAMA Neurol. 2017;74:1312–8.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Schmidt M, Pedersen L, Sørensen HT. The Danish Civil Registration System as a tool in epidemiology. Eur J Epidemiol. 2014;29:541–9.

    Article  PubMed  Google Scholar 

  33. Schmidt M, Schmidt SA, Sandegaard JL, Ehrenstein V, Pedersen L, Sorensen HT. The Danish National Patient Registry: a review of content, data quality, and research potential. Clin Epidemiol. 2015;7:449–90.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Erichsen R, Baron JA, Hamilton-Dutoit SJ, Snover DC, Torlakovic EE, Pedersen L, et al. Increased risk of colorectal cancer development among patients with serrated polyps. Gastroenterology. 2016;150:895–902.e5.

    Article  PubMed  Google Scholar 

  35. Schmidt M, Schmidt SAJ, Adelborg K, Sundbøll J, Laugesen K, Ehrenstein V, et al. The Danish health care system and epidemiological research: from health care contacts to database records. Clin Epidemiol. 2019;11:563–91.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cole TJ. The LMS method for constructing normalized growth standards. Eur J Clin Nutr. 1990;44:45–60.

    CAS  PubMed  Google Scholar 

  37. Cole TJ, Green PJ. Smoothing reference centile curves: the LMS method and penalized likelihood. Stat Med. 1992;11:1305–19.

    Article  CAS  PubMed  Google Scholar 

  38. Erichsen R, Strate L, Sørensen HT, Baron JA. Positive predictive values of the International Classification of Disease, 10th edition diagnoses codes for diverticular disease in the Danish National Registry of Patients. Clin Exp Gastroenterol. 2010;3:139–42.

    Article  PubMed  PubMed Central  Google Scholar 

  39. VanderWeele TJ, Ding P. Sensitivity analysis in observational research: introducing the E-value. Ann Intern Med. 2017;167:268–74.

    Article  PubMed  Google Scholar 

  40. Tursi A, Mastromarino P, Capobianco D, Elisei W, Miccheli A, Capuani G, et al. Assessment of fecal microbiota and fecal metabolome in symptomatic uncomplicated diverticular disease of the colon. J Clin Gastroenterol. 2016;50(Suppl 1):S9–s12.

    Article  CAS  PubMed  Google Scholar 

  41. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Human gut microbes associated with obesity. Nature. 2006;444:1022–3.

    Article  CAS  PubMed  Google Scholar 

  42. van Rossen TM, Ooijevaar RE, Kuyvenhoven JP, Eck A, Bril H, Buijsman R, et al. Microbiota composition and mucosal immunity in patients with asymptomatic diverticulosis and controls. PLoS ONE. 2021;16:e0256657.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ticinesi A, Nouvenne A, Corrente V, Tana C, Di Mario F, Meschi T. Diverticular disease: a gut microbiota perspective. J Gastrointestin Liver Dis. 2019;28:327–37.

    Article  PubMed  Google Scholar 

  44. Aune D, Sen A, Norat T, Riboli E. Dietary fibre intake and the risk of diverticular disease: a systematic review and meta-analysis of prospective studies. Eur J Nutr. 2020;59:421–32.

    Article  PubMed  Google Scholar 

  45. Ma W, Nguyen LH, Song M, Wang DD, Franzosa EA, Cao Y, et al. Dietary fiber intake, the gut microbiome, and chronic systemic inflammation in a cohort of adult men. Genome Med. 2021;13:102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ihekweazu FD, Versalovic J. Development of the pediatric gut microbiome: impact on health and disease. Am J Med Sci. 2018;356:413–23.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Grech A, Collins CE, Holmes A, Lal R, Duncanson K, Taylor R, et al. Maternal exposures and the infant gut microbiome: a systematic review with meta-analysis. Gut Microbes. 2021;13:1–30.

    Article  PubMed  Google Scholar 

  48. Philips EM, Santos S, Trasande L, Aurrekoetxea JJ, Barros H, von Berg A, et al. Changes in parental smoking during pregnancy and risks of adverse birth outcomes and childhood overweight in Europe and North America: an individual participant data meta-analysis of 229,000 singleton births. PLoS Med. 2020;17:e1003182.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Karur O, Gutvirtz G, Wainstock T, Sheiner E. Maternal prenatal smoking and long-term gastrointestinal morbidity of the offspring: a population-based cohort analysis. Reprod Toxicol. 2021;103:133–8.

    Article  CAS  PubMed  Google Scholar 

  50. Ranbøll for the Ministry of Children and Education. Undesøgelse af hjemmeundervisnign, fravær og børn uden for undervisningstilbud (Assessment of home schooling, absenteeism and children not receiving schooling). 2018.

  51. Københavns Statistiske Kontor KKCSO, Copenhagen Municipality, Year books 1930–1969. Available at https://www.kk.dk/om-kommunen/fakta-og-statistik/analyser-og-historisk-statistik/historisk-statistik/aarboeger-1930–1969. Access date: November 2, 2022.

  52. Nakahara Y, Yorifuji T, Kubo T, Doi H. Maternal smoking as a risk factor for childhood intussusception. Arch Environ Occup Health. 2018;73:96–101.

    Article  PubMed  Google Scholar 

  53. Cao Y, Strate LL, Keeley BR, Tam I, Wu K, Giovannucci EL, et al. Meat intake and risk of diverticulitis among men. Gut. 2018;67:466–72.

    Article  CAS  PubMed  Google Scholar 

  54. Jensen CB, Gamborg M, Heitmann B, Sørensen TI, Baker JL. Comparison of birth weight between school health records and medical birth records in Denmark: determinants of discrepancies. BMJ Open. 2015;5:e008628.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Newcomer SR, Xu S, Kulldorff M, Daley MF, Fireman B, Glanz JM. A primer on quantitative bias analysis with positive predictive values in research using electronic health data. J Am Med Inform Assoc. 2019;26:1664–74.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Flanders WD, Klein M. Properties of 2 counterfactual effect definitions of a point exposure. Epidemiology. 2007;18:453–60.

    Article  PubMed  Google Scholar 

  57. Hernán MA, Hernández-Díaz S, Robins JM. A structural approach to selection bias. Epidemiology. 2004;15:615–25.

    Article  PubMed  Google Scholar 

  58. Aarestrup J, Bjerregaard LG, Gamborg M, Ängquist L, Tjønneland A, Overvad K, et al. Tracking of body mass index from 7 to 69 years of age. Int J Obes. 2016;40:1376–83.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The CSHRR was initiated and planned by TIAS and built by the Institute of Preventive Medicine, The Capital Region of Denmark. The study was supported by the National Institutes of Health (R01DK101495). The Department of Clinical Epidemiology, Aarhus University Hospital, receives funding for other studies from companies in the form of research grants to (and administered by) Aarhus University. None of these studies have any relation to the present study.

Author information

Authors and Affiliations

Authors

Contributions

HTS, LLS, JLB, TIAS and BWJ designed the study. TIAS initiated and planned the Copenhagen School Health Records Register. BWJ analyzed the data. All authors interpreted the results. ASDL drafted the manuscript. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Anne Sofie D. Laursen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laursen, A.S.D., Jensen, B.W., Strate, L.L. et al. Birth weight, childhood body mass index, and risk of diverticular disease in adulthood. Int J Obes 47, 207–214 (2023). https://doi.org/10.1038/s41366-023-01259-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-023-01259-8

Search

Quick links