Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Molecular Biology

Codon-optimized FAM132b gene therapy prevents dietary obesity by blockading adrenergic response and insulin action

Abstract

Background

FAM132b (myonectin) has been identified as a muscle-derived myokine with exercise and has hormone activity in circulation to regulate iron homeostasis and lipid metabolism via unknown receptors. Here, we aim to explore the potential of adeno-associated virus to deliver FAM132b in vivo to develop a gene therapy against obesity.

Methods

Adeno-associated virus AAV9 were engineered to induce overexpression of FAM132b with two mutations, A136T and P159A. Then, AAV9 was delivered into high-fat diet mice through tail vein, and glucose homeostasis and obesity development of mice were observed. Methods of structural biology were used to predict the action site or receptor of the FAM132b mutant.

Results

Treatment of high-fat diet-fed mice with AAV9 improved glucose intolerance and insulin resistance, and resulted in reductions in body weight, fat depot, and adipocyte size. Codon-optimized FAM132b (coFAM132b) reduced the glycemic response to epinephrine (EPI) in the whole body and increased the lipolytic response to EPI in adipose tissues. However, FAM132b knockdown by shRNA significantly increased the glycemic response to EPI in vivo and reduced adipocyte response to EPI and adipose tissue browning. Structural analysis predicted that the FAM132b mutant with A136T and P159A may form a weak bond with β2 adrenergic receptor (ADRB2) and may have more affinity for insulin and insulin-receptor complexes.

Conclusions

Our study underscores the potential of FAM132b gene therapy with codon optimization to treat obesity by modulating the adrenergic response and insulin action. Both structural biological analysis and in vivo experiments suggest that the adrenergic response and insulin action are most likely blockaded by FAM132b mutants.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: AAV9-mediated gene transfer of coFAM132b counteracts HFD-induced obesity.
Fig. 2: coFAM132b gene transfer improves glucose homeostasis and attenuates the adrenergic response of blood glucose.
Fig. 3: coFAM132b gene transfer increases insulin-stimulated glucose uptake in eWAT and BAT.
Fig. 4: coFAM132b gene transfer increases the adrenergic response of lipolysis in WAT.
Fig. 5: Structural analysis of FAM132b mutants in complex with ADRB2, insulin, or insulin-receptor.
Fig. 6: coFAM132b gene transfer stimulates WAT browning.
Fig. 7: FAM132b knockdown increases the adrenergic response of blood glucose and suppresses the adrenergic response of lipolysis in BAT.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Bougneres P, Stunff CL, Pecqueur C, Pinglier E, Adnot P, Ricquier D. In vivo resistance of lipolysis to epinephrine. A new feature of childhood onset obesity. J Clin Investig. 1997;99:2568–73.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. Qi Z, Ding S. Obesity-associated sympathetic overactivity in children and adolescents: the role of catecholamine resistance in lipid metabolism. J Pediatr Endocrinol Metab. 2016;29:113–25.

    CAS  PubMed  Article  Google Scholar 

  3. Seals DR, Bell C. Chronic sympathetic activation: consequence and cause of age-associated obesity? Diabetes. 2004;53:276–84.

    CAS  PubMed  Article  Google Scholar 

  4. Marion-Latard F, De Glisezinski I, Crampes F, Berlan M, Galitzky J, Suljkovicova H, et al. A single bout of exercise induces beta-adrenergic desensitization in human adipose tissue. Am J Physiol Regul Integr Comp Physiol. 2001;280:R166–R173.

    CAS  PubMed  Article  Google Scholar 

  5. Stich V, De Glisezinski I, Crampes F, Hejnova J, Cottet-Emard JM, Galitzky J, et al. Activation of alpha(2)-adrenergic receptors impairs exercise-induced lipolysis in SCAT of obese subjects. Am J Physiol Regul Integr Comp Physiol. 2000;279:R499–R504.

    CAS  PubMed  Article  Google Scholar 

  6. Perry RJ, Zhang XM, Zhang D, Kumashiro N, Camporez JP, Cline GW, et al. Leptin reverses diabetes by suppression of the hypothalamic-pituitary-adrenal axis. Nat Med. 2014;20:759–63.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. Gan SU, Fu Z, Sia KC, Kon OL, Calne R, Lee KO. Development of a liver-specific Tet-off AAV8 vector for improved safety of insulin gene therapy for diabetes. J Gene Med. 2019;21:e3067.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  8. Jimenez V, Jambrina C, Casana E, Sacristan V, Munoz S, Darriba S. et al. FGF21 gene therapy as treatment for obesity and insulin resistance. Embo Mol Med. 2018;8:e8791

    Google Scholar 

  9. Hoffmann JM, Grunberg JR, Church C, Elias I, Palsdottir V, Jansson JO, et al. BMP4 gene therapy in mature mice reduces BAT activation but protects from obesity by browning subcutaneous adipose tissue. Cell Rep. 2017;20:1038–49.

    CAS  PubMed  Article  Google Scholar 

  10. Samson SL, Gonzalez EV, Yechoor V, Bajaj M, Oka K, Chan L. Gene therapy for diabetes: metabolic effects of helper-dependent adenoviral exendin 4 expression in a diet-induced obesity mouse model. Mol Ther. 2008;16:1805–12.

    CAS  PubMed  Article  Google Scholar 

  11. Liang Q, Zhong L, Zhang J, Wang Y, Bornstein SR, Triggle CR, et al. FGF21 maintains glucose homeostasis by mediating the cross talk between liver and brain during prolonged fasting. Diabetes. 2014;63:4064–75.

    CAS  PubMed  Article  Google Scholar 

  12. Seldin MM, Peterson JM, Byerly MS, Wei Z, Wong GW. Myonectin (CTRP15), a novel myokine that links skeletal muscle to systemic lipid homeostasis. J Biol Chem. 2012;287:11968–80.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. Mi Q, Li Y, Wang M, Yang G, Zhao X, Liu H, et al. Circulating C1q/TNF-related protein isoform 15 is a marker for the presence of metabolic syndrome. Diabetes Metab Res Rev. 2019;35:e3085.

    PubMed  Article  CAS  Google Scholar 

  14. Kautz L, Jung G, Du X, Gabayan V, Chapman J, Nasoff M, et al. Erythroferrone contributes to hepcidin suppression and iron overload in a mouse model of beta-thalassemia. Blood. 2015;126:2031–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. Huang W, Queen NJ, McMurphy TB, Ali S, Cao L. Adipose PTEN regulates adult adipose tissue homeostasis and redistribution via a PTEN-leptin-sympathetic loop. Mol Metab. 2019;30:48–60.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. Little HC, Rodriguez S, Lei X, Tan SY, Stewart AN, Sahagun A, et al. Myonectin deletion promotes adipose fat storage and reduces liver steatosis. FASEB J. 2019;33:8666–87.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. Riaz M, Raz Y, Moloney EB, van Putten M, Krom YD, van der Maarel SM, et al. Differential myofiber-type transduction preference of adeno-associated virus serotypes 6 and 9. Skelet Muscle. 2015;5:37.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  18. Seldin MM, Lei X, Tan SY, Stanson KP, Wei Z, Wong GW. Skeletal muscle-derived myonectin activates the mammalian target of rapamycin (mTOR) pathway to suppress autophagy in liver. J Biol Chem. 2013;288:36073–82.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. Colella P, Ronzitti G, Mingozzi F. Emerging Issues in AAV-mediated in vivo gene therapy. Mol Ther Methods Clin Dev. 2018;8:87–104.

    CAS  PubMed  Article  Google Scholar 

  20. Seldin MM, Wong GW. Regulation of tissue crosstalk by skeletal muscle-derived myonectin and other myokines. Adipocyte. 2012;1:200–2.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. Simcox J, Geoghegan G, Maschek JA, Bensard CL, Pasquali M, Miao R, et al. Global analysis of plasma lipids identifies liver-derived acylcarnitines as a fuel source for brown fat thermogenesis. Cell Metab. 2017;26:509–22.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. Simcox JA, McClain DA. Iron and diabetes risk. Cell Metab. 2013;17:329–41.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. Babitt JL. Erythroferrone in iron regulation and beyond. Blood. 2022;139:319–21.

    CAS  PubMed  Article  Google Scholar 

  24. Kautz L, Jung G, Valore EV, Rivella S, Nemeth E, Ganz T. Identification of erythroferrone as an erythroid regulator of iron metabolism. Nat Genet. 2014;46:678–84.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. Schutten MT, Houben AJ, de Leeuw PW, Stehouwer CD. The link between adipose tissue renin-angiotensin-aldosterone system signaling and obesity-associated hypertension. Physiology. 2017;32:197–209.

    PubMed  Article  CAS  Google Scholar 

  26. Marcus Y, Shefer G, Stern N. Adipose tissue renin-angiotensin-aldosterone system (RAAS) and progression of insulin resistance. Mol Cell Endocrinol. 2013;378:1–14.

    CAS  PubMed  Article  Google Scholar 

  27. Liao WH, Suendermann C, Steuer AE, Pacheco LG, Odermatt A, Faresse N. et al. Aldosterone deficiency in mice burdens respiration and accentuates diet-induced hyperinsulinemia and obesity. JCI Insight. 2018;14:e99015

    Article  Google Scholar 

  28. Nagareddy PR, Murphy AJ, Stirzaker RA, Hu Y, Yu S, Miller RG, et al. Hyperglycemia promotes myelopoiesis and impairs the resolution of atherosclerosis. Cell Metab. 2013;17:695–708.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. Brownlee M. Hyperglycemia-stimulated myelopoiesis causes impaired regression of atherosclerosis in type 1 diabetes. Cell Metab. 2013;17:631–3.

    CAS  PubMed  Article  Google Scholar 

  30. Knudsen JG, Hamilton A, Ramracheya R, Tarasov AI, Brereton M, Haythorne E, et al. Dysregulation of glucagon secretion by hyperglycemia-induced sodium-dependent reduction of ATP production. Cell Metab. 2019;29:430–42.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Peters A, Schweiger U, Fruhwald-Schultes B, Born J, Fehm HL. The neuroendocrine control of glucose allocation. Exp Clin Endocrinol Diabetes. 2002;110:199–211.

    CAS  PubMed  Article  Google Scholar 

  32. Rojas JM, Matsen ME, Mundinger TO, Morton GJ, Stefanovski D, Bergman RN, et al. Glucose intolerance induced by blockade of central FGF receptors is linked to an acute stress response. Mol Metab. 2015;4:561–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. Baskin KK, Winders BR, Olson EN. Muscle as a “mediator” of systemic metabolism. Cell Metab. 2015;21:237–48.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. Zhao X, Karpac J. Muscle directs diurnal energy homeostasis through a myokine-dependent hormone module in drosophila. Curr Biol. 2017;27:1941–55.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Covington JD, Tam CS, Bajpeyi S, Galgani JE, Noland RC, Smith SR, et al. Myokine expression in muscle and myotubes in response to exercise stimulation. Med Sci Sports Exerc. 2016;48:384–90.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. Jimenez V, Munoz S, Casana E, Mallol C, Elias I, Jambrina C, et al. In vivo adeno-associated viral vector-mediated genetic engineering of white and brown adipose tissue in adult mice. Diabetes. 2013;62:4012–22.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. Cantley JL, Vatner DF, Galbo T, Madiraju A, Petersen M, Perry RJ, et al. Targeting steroid receptor coactivator 1 with antisense oligonucleotides increases insulin-stimulated skeletal muscle glucose uptake in chow-fed and high-fat-fed male rats. Am J Physiol Endocrinol Metab. 2014;307:E773–E783.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. Gaidhu MP, Anthony NM, Patel P, Hawke TJ, Ceddia RB. Dysregulation of lipolysis and lipid metabolism in visceral and subcutaneous adipocytes by high-fat diet: role of ATGL, HSL, and AMPK. Am J Physiol Cell Physiol. 2010;298:C961–C971.

    CAS  PubMed  Article  Google Scholar 

  39. Qi Z, Xia J, Xue X, Liu J, Liu W, Ding S. Targeting viperin improves diet-induced glucose intolerance but not adipose tissue inflammation. Oncotarget. 2017;8:101418–36.

    PubMed  PubMed Central  Article  Google Scholar 

  40. Roy A, Kucukural A, Zhang Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc. 2010;5:725–38.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER Suite: protein structure and function prediction. Nat Methods. 2015;12:7–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. Yang J, Zhang Y. I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res. 2015;43:W174–W181.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. Laskowski RA, Rullmannn JA, MacArthur MW, Kaptein R, Thornton JM. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR. 1996;8:477–86.

    CAS  PubMed  Article  Google Scholar 

  44. Eargle J, Wright D, Luthey-Schulten Z. Multiple alignment of protein structures and sequences for VMD. Bioinformatics. 2006;22:504–6.

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Li Rui, the director engineer of Genomeditech (Shanghai) Co., Ltd., for designing and producing recombinant AAV vectors of serotype 9 encoding the FAM132b cDNA sequence or RNAi sequence. We thank Dr. Wu J.L. and Dr. Liu Y.M., technician of the Instrumental Analysis Center of Shanghai Jiaotong University, for their expertise and conversations related to body composition analyses and metabolic assays. Supported by Natural Science Foundation of China grants 31871208 and 31300977, Shanghai Natural Science Foundation (18ZR1412000), the Fundamental Research Funds for the Central Universities (40500-20104-222288) and the Key Laboratory Construction Project of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, China (No. 40500-541235-14203/004).

Author information

Authors and Affiliations

Authors

Contributions

ZQ and WL conceived, designed, performed, and interpreted experiments and made figures. JX, XX, JL, WL, LL, ZC, and ZH performed animal care, glucose tolerance tests, insulin tolerance tests, EPI tolerance tests, real-time PCR, and data collection, interpreted a part of experiments and made some figures. XZ, QZ, XL, LC, BJ performed animal care, metabolite analysis, and data processing. YZ, JL performed structural analysis and ZDOCK. SD participated in interpreting the results and supervising the experimental plan. ZQ and WL wrote and revised the manuscript.

Corresponding authors

Correspondence to Shuzhe Ding or Weina Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qi, Z., Xia, J., Xue, X. et al. Codon-optimized FAM132b gene therapy prevents dietary obesity by blockading adrenergic response and insulin action. Int J Obes (2022). https://doi.org/10.1038/s41366-022-01189-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41366-022-01189-x

Search

Quick links