Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epidemiology and Population Health

Body fat and risk of all-cause mortality: a systematic review and dose-response meta-analysis of prospective cohort studies

Abstract

Background/objectives

We aimed to evaluate the relationships between body fat percentage (BF%), fat mass (FM), fat mass index (FMI) and visceral (VAT) and subcutaneous adipose tissue (SAT) with risk of all-cause mortality.

Methods

We did a systematic search in PubMed, Scopus, and Web of Science to June 2021. We selected prospective cohorts of the relationship between body fat with risk of all-cause mortality in the general population. We applied random-effects models to calculate the relative risks (RRs) and 95%CIs.

Results

A total of 35 prospective cohort studies with 923,295 participants and 68,389 deaths were identified. The HRs of all-cause mortality for a 10% increment in BF were 1.11 (95%CI: 1.02, 1.20; I2 = 93%, n = 11) in the general adult populations, and 0.92 (95%CI: 0.79, 1.06; I2 = 76%, n = 7) in adults older than 60 years. The HRs were 1.06 (95%CI: 1.01, 1.12; I2 = 86%, n = 10) for a 5 kg increment in FM, 1.11 (95%CI: 1.06, 1.16; I2 = 79%, n = 7) for a 2 kg/m2 increment in FMI, and 1.17 (95%CI: 1.03, 1.33; I2 = 72%, n = 8) and 0.81 (0.66, 0.99; I2 = 59%, n = 6) for a 1-SD increment in VAT and SAT, respectively. There was a J shaped association between BF% and FM and all-cause mortality risk, with the lowest risk at BF% of 25% and FM of 20 kg. In subgroup analyses, although there was little evidence of between-subgroup heterogeneity, the observed positive associations were more pronounced in studies which had a longer duration, excluded participants with prevalent cardiovascular disease and cancer at baseline, with adjustment for smoking or restricted to never smokers, and less pronounced in studies which adjusted for potential intermediates, suggesting an impact of reverse causation, confounding and over-adjustment in some of the studies.

Conclusions

Higher body fat content was related to a higher risk of mortality in a J shaped manner. Any future studies should further assess the impact of reverse causation and residual confounding on these associations.

Registration

PROSPERO (CRD42021240743).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dose-response association of body fat percentage with the risk of all-cause mortality (Pnonlinearity < 0.001, n = 14).
Fig. 2: Dose-response association of body fat percentage with the risk of all-cause mortality in the general adult populations.
Fig. 3: Dose-response association of body fat percentage with the risk of all-cause mortality in men (Pnon-linearity < 0.001, n = 9).
Fig. 4: Dose-response association of body fat percentage with the risk of all-cause mortality in women (Pnon-linearity < 0.001, n = 8).
Fig. 5: Dose-response association of fat mass with the risk of all-cause mortality (Pnon-linearity = 0.01, n = 6).
Fig. 6: Dose-response association of fat mass index with the risk of all-cause mortality (Pnon-linearity < 0.001, n = 4).

Similar content being viewed by others

Data availability

The data and analytical codes used for the present review will be available upon request.

References

  1. Aune D, Sen A, Prasad M, Norat T, Janszky I, Tonstad S et al. BMI and all cause mortality: systematic review and non-linear dose-response meta-analysis of 230 cohort studies with 3.74 million deaths among 30.3 million participants. BMJ. 2016;353.

  2. Di Angelantonio E, Bhupathiraju SN, Wormser D, Gao P, Kaptoge S, De Gonzalez AB, et al. Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents. Lancet. 2016;388:776–86.

    Article  PubMed  Google Scholar 

  3. Jayedi A, Soltani S, Zargar MS, Khan TA, Shab-Bidar S. Central fatness and risk of all cause mortality: systematic review and dose-response meta-analysis of 72 prospective cohort studies. BMJ. 2020;370.

  4. Després J-P. Body fat distribution and risk of cardiovascular disease: an update. Circulation. 2012;126:1301–13.

    Article  PubMed  Google Scholar 

  5. Nevill AM, Stewart AD, Olds T, Holder R. Relationship between adiposity and body size reveals limitations of BMI. Am J Phys Anthropol. 2006;129:151–6.

    Article  PubMed  Google Scholar 

  6. Shen W, Wang Z, Punyanita M, Lei J, Sinav A, Kral JG, et al. Adipose tissue quantification by imaging methods: a proposed classification. Obes Res. 2003;11:5–16.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cheung A, De Rooy C, Hoermann R, Gianatti E, Hamilton E, Roff G, et al. Correlation of visceral adipose tissue measured by Lunar Prodigy dual X-ray absorptiometry with MRI and CT in older men. Int J Obes. 2016;40:1325–8.

    Article  CAS  Google Scholar 

  8. Park Y, Heymsfield S, Gallagher D. Are dual-energy X-ray absorptiometry regional estimates associated with visceral adipose tissue mass? Int J Obes. 2002;26:978–83.

    Article  Google Scholar 

  9. Schousboe JT, Langsetmo L, Schwartz AV, Taylor BC, Vo TN, Kats AM, et al. Comparison of associations of DXA and CT visceral adipose tissue measures with insulin resistance, lipid levels, and inflammatory markers. J Clin Densitom. 2017;20:256–64.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Houtkooper LB, Lohman TG, Going SB, Howell WH. Why bioelectrical impedance analysis should be used for estimating adiposity. Am J Clin Nutr. 1996;64:436S–48S.

    Article  CAS  PubMed  Google Scholar 

  11. Lee DH, Keum N, Hu FB, Orav EJ, Rimm EB, Sun Q, et al. Development and validation of anthropometric prediction equations for lean body mass, fat mass and percent fat in adults using the National Health and Nutrition Examination Survey (NHANES) 1999–2006. Br J Nutr. 2017;118:858–66.

    Article  CAS  PubMed  Google Scholar 

  12. Cornier M-A, Despres J-P, Davis N, Grossniklaus DA, Klein S, Lamarche B, et al. Assessing adiposity: a scientific statement from the American Heart Association. Circulation. 2011;124:1996–2019.

    Article  PubMed  Google Scholar 

  13. Matsuzawa Y, Shimomura I, Nakamura T, Keno Y, Kotani K, Tokunaga K. Pathophysiology and pathogenesis of visceral fat obesity. Obes Res. 1995;3:187s–94s.

    Article  PubMed  Google Scholar 

  14. Ibrahim MM. Subcutaneous and visceral adipose tissue: structural and functional differences. Obes Rev. 2010;11:11–18.

    Article  PubMed  Google Scholar 

  15. Hutley L, Prins JB. Fat as an endocrine organ: relationship to the metabolic syndrome. Am J Med Sci. 2005;330:280–9.

    Article  PubMed  Google Scholar 

  16. Chan DC, Barrett HP, Watts GF. Dyslipidemia in visceral obesity. Am J Cardiovasc Drugs. 2004;4:227–46.

    Article  CAS  PubMed  Google Scholar 

  17. Fontana L, Eagon JC, Trujillo ME, Scherer PE, Klein S. Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes. 2007;56:1010–3.

    Article  CAS  PubMed  Google Scholar 

  18. Frayn KN. Visceral fat and insulin resistance—causative or correlative? Br J Nutr. 2000;83:S71–7.

    Article  CAS  PubMed  Google Scholar 

  19. Rosenquist KJ, Massaro JM, Pedley A, Long MT, Kreger BE, Vasan RS, et al. Fat quality and incident cardiovascular disease, all-cause mortality, and cancer mortality. J Clin Endocrinol Metab. 2015;100:227–34.

    Article  CAS  PubMed  Google Scholar 

  20. Porter SA, Massaro JM, Hoffmann U, Vasan RS, O’Donnel CJ, Fox CS. Abdominal subcutaneous adipose tissue: a protective fat depot? Diabetes Care. 2009;32:1068–75.

    Article  PubMed  PubMed Central  Google Scholar 

  21. McLaughlin T, Lamendola C, Liu A, Abbasi F. Preferential fat deposition in subcutaneous versus visceral depots is associated with insulin sensitivity. J Clin Endocrinol Metab. 2011;96:E1756–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Britton KA, Massaro JM, Murabito JM, Kreger BE, Hoffmann U, Fox CS. Body fat distribution, incident cardiovascular disease, cancer, and all-cause mortality. J Am Coll Cardiol. 2013;62:921–5.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chuang S-Y, Hsu Y-Y, Chen RC-Y, Liu W-L, Pan W-H. Abdominal obesity and low skeletal muscle mass jointly predict total mortality and cardiovascular mortality in an elderly Asian population. J Gerontol A Biomed Sci Med Sci. 2016;71:1049–55.

    Article  Google Scholar 

  25. de Santana FM, Domiciano DS, Gonçalves MA, Machado LG, Figueiredo CP, Lopes JB, et al. Association of appendicular lean mass, and subcutaneous and visceral adipose tissue with mortality in older Brazilians: The São Paulo Ageing & Health Study. J Bone Miner Res. 2019;34:1264–74.

    Article  PubMed  Google Scholar 

  26. Han SS, Kim KW, Kim KI, Na KY, Chae DW, Kim S, et al. Lean mass index: a better predictor of mortality than body mass index in elderly Asians. J Am Geriatr Soc. 2010;58:312–7.

    Article  PubMed  Google Scholar 

  27. Padwal R, Majumdar SR, Leslie WD. Relationship among body fat percentage, body mass index, and all-cause mortality. Ann Intern Med. 2016;165:604.

    Article  PubMed  Google Scholar 

  28. Sanada K, Chen R, Willcox B, Ohara T, Wen A, Takenaka C, et al. Association of sarcopenic obesity predicted by anthropometric measurements and 24-y all-cause mortality in elderly men: The Kuakini Honolulu Heart Program. Nutrition. 2018;46:97–102.

    Article  PubMed  Google Scholar 

  29. Sedlmeier AM, Baumeister SE, Weber A, Fischer B, Thorand B, Ittermann T, et al. Relation of body fat mass and fat-free mass to total mortality: results from 7 prospective cohort studies. Am J Clin Nutr. 2021;113:639–46.

    Article  PubMed  Google Scholar 

  30. Spahillari A, Mukamal KJ, DeFilippi C, Kizer JR, Gottdiener JS, Djoussé L, et al. The association of lean and fat mass with all-cause mortality in older adults: The Cardiovascular Health Study. Nutr Metab Cardiovasc Dis. 2016;26:1039–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wells GA, Shea B, O’Connell DA, Peterson J, Welch V, Losos M et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. In: Oxford, 2000.

  32. Symons M, Moore D. Hazard rate ratio and prospective epidemiological studies. J Clin Epidemiol. 2002;55:893–9.

    Article  CAS  PubMed  Google Scholar 

  33. Jyväkorpi SK, Urtamo A, Kivimäki M, Salomaa V, Strandberg TE. Association of midlife body composition with old-age health-related quality of life, mortality, and reaching 90 years of age: a 32-year follow-up of a male cohort. Am J Clin Nutr. 2020;112:1287–94.

    Article  PubMed  Google Scholar 

  34. Kuk JL, Katzmarzyk PT, Nichaman MZ, Church TS, Blair SN, Ross R. Visceral fat is an independent predictor of all‐cause mortality in men. Obesity. 2006;14:336–41.

    Article  PubMed  Google Scholar 

  35. Zhang J, Kai FY. What’s the relative risk?: A method of correcting the odds ratio in cohort studies of common outcomes. Jama. 1998;280:1690–1.

    Article  CAS  PubMed  Google Scholar 

  36. Crippa A, Discacciati A, Bottai M, Spiegelman D, Orsini N. One-stage dose–response meta-analysis for aggregated data. Stat Methods Med Res. 2019;28:1579–96.

    Article  PubMed  Google Scholar 

  37. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–88.

    Article  CAS  PubMed  Google Scholar 

  38. Bigaard J, Frederiksen K, Tjønneland A, Thomsen BL, Overvad K, Heitmann BL, et al. Waist circumference and body composition in relation to all-cause mortality in middle-aged men and women. Int J Obes (Lond). 2005;29:778–84.

    Article  CAS  Google Scholar 

  39. Howell CR, Mehta T, Ejima K. Body composition and mortality in Mexican American adults: results from the national health and nutrition examination survey. Obesity (Silver Spring). 2018;26:1372–80.

    Article  Google Scholar 

  40. Lahmann PH, Lissner L, Gullberg B, Berglund G. A prospective study of adiposity and all‐cause mortality: the Malmö Diet and Cancer Study. Obes Res. 2002;10:361–9.

    Article  PubMed  Google Scholar 

  41. Myint PK, Kwok CS, Luben RN, Wareham NJ, Khaw K-T. Body fat percentage, body mass index and waist-to-hip ratio as predictors of mortality and cardiovascular disease. Heart. 2014;100:1613–9.

    Article  PubMed  Google Scholar 

  42. Romero-Corral A, Somers VK, Sierra-Johnson J, Korenfeld Y, Boarin S, Korinek J, et al. Normal weight obesity: a risk factor for cardiometabolic dysregulation and cardiovascular mortality. Eur Heart J. 2010;31:737–46.

    Article  PubMed  Google Scholar 

  43. Santanasto AJ, Goodpaster BH, Kritchevsky SB, Miljkovic I, Satterfield S, Schwartz AV, et al. Body composition remodeling and mortality: the health aging and body composition study. J Gerontol A Biol Sci Med Sci. 2017;72:513–9.

    PubMed  Google Scholar 

  44. Simpson JA, MacInnis RJ, Peeters A, Hopper JL, Giles GG, English DR. A comparison of adiposity measures as predictors of all‐cause mortality: the Melbourne Collaborative Cohort Study. Obesity. 2007;15:994–1003.

    Article  PubMed  Google Scholar 

  45. Yu T, Bo Y, Chang L-Y, Liu X, Tam T, Lao XQ. Adiposity and risk of death: A prospective cohort study of 463,002 adults. Clin Nutr. 2020;40:1932–41.

    Article  PubMed  Google Scholar 

  46. Heitmann B, Erikson H, Ellsinger B, Mikkelsen K, Larsson B. Mortality associated with body fat, fat-free mass and body mass index among 60-year-old Swedish men—a 22-year follow-up. The study of men born in 1913. Int J Obes. 2000;24:33–7.

    Article  CAS  Google Scholar 

  47. Shil Hong E, Khang AR, Roh E, Jeong Ku E, An Kim Y, Min Kim K, et al. Counterintuitive relationship between visceral fat and all‐cause mortality in an elderly A sian population. Obesity. 2015;23:220–7.

    Article  PubMed  Google Scholar 

  48. Sørensen TIA, Frederiksen P, Heitmann BL. Levels and changes in body mass index decomposed into fat and fat-free mass index: relation to long-term all-cause mortality in the general population. Int J Obes. 2020;44:2092–100.

    Article  CAS  Google Scholar 

  49. Zong G, Zhang Z, Yang Q, Wu H, Hu FB, Sun Q. Total and regional adiposity measured by dual‐energy X‐ray absorptiometry and mortality in NHANES 1999‐2006. Obesity. 2016;24:2414–21.

    Article  CAS  PubMed  Google Scholar 

  50. Hamling J, Lee P, Weitkunat R, Ambühl M. Facilitating meta‐analyses by deriving relative effect and precision estimates for alternative comparisons from a set of estimates presented by exposure level or disease category. Stat Med. 2008;27:954–70.

    Article  PubMed  Google Scholar 

  51. Bagheri M, Speakman J, Shabbidar S, Kazemi F, Djafarian K. A dose‐response meta‐analysis of the impact of body mass index on stroke and all‐cause mortality in stroke patients: a paradox within a paradox. Obes Rev. 2015;16:416–23.

    Article  CAS  PubMed  Google Scholar 

  52. Jayedi A, Shab-Bidar S. Nonlinear dose–response association between body mass index and risk of all-cause and cardiovascular mortality in patients with hypertension: A meta-analysis. Obes Res Clin Pract. 2018;12:16–28.

    Article  PubMed  Google Scholar 

  53. Higgins JP, Thomas J, Chandler J, Cumpston M, Li T, Page MJ et al. Cochrane handbook for systematic reviews of interventions, John Wiley & Sons, 2019.

  54. Egger M, Smith GD, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50:1088–101.

    Article  CAS  PubMed  Google Scholar 

  56. Bea JW, Thomson CA, Wertheim BC, Nicholas JS, Ernst KC, Hu C, et al. Risk of mortality according to body mass index and body composition among postmenopausal women. Am J Epidemiol. 2015;182:585–96.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Brown JC, Harhay MO, Harhay MN. Anthropometrically‐predicted visceral adipose tissue and mortality among men and women in the third national health and nutrition examination survey (NHANES III). Am J Human Biol. 2017;29:e22898.

    Article  Google Scholar 

  58. Dolan CM, Kraemer H, Browner W, Ensrud K, Kelsey JL. Associations between body composition, anthropometry, and mortality in women aged 65 years and older. Am J Pub Health. 2007;97:913–8.

    Article  Google Scholar 

  59. Gale CR, Martyn CN, Cooper C, Sayer AA. Grip strength, body composition, and mortality. Int J Epidemiol. 2007;36:228–35.

    Article  PubMed  Google Scholar 

  60. Genton L, Graf CE, Karsegard VL, Kyle UG, Pichard C. Low fat-free mass as a marker of mortality in community-dwelling healthy elderly subjects. Age Ageing. 2013;42:33–39.

    Article  PubMed  Google Scholar 

  61. Katzmarzyk P, Mire E, Bouchard C. Abdominal obesity and mortality: the Pennington Center longitudinal study. Nutr Diabetes. 2012;2:e42–e42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Koster A, Murphy RA, Eiriksdottir G, Aspelund T, Sigurdsson S, Lang TF, et al. Fat distribution and mortality: the AGES‐Reykjavik Study. Obesity. 2015;23:893–7.

    Article  PubMed  Google Scholar 

  63. Lee CD, Blair SN, Jackson AS. Cardiorespiratory fitness, body composition, and all-cause and cardiovascular disease mortality in men. Am J Clin Nutr. 1999;69:373–80.

    Article  CAS  PubMed  Google Scholar 

  64. Lee DH, Keum N, Hu FB, Orav EJ, Rimm EB, Willett WC, et al. Predicted lean body mass, fat mass, and all cause and cause specific mortality in men: prospective US cohort study. BMJ. 2018;362:k2575.

    Article  PubMed  PubMed Central  Google Scholar 

  65. McNeely MJ, Shofer JB, Leonetti DL, Fujimoto WY, Boyko EJ. Associations among visceral fat, all-cause mortality, and obesity-related mortality in Japanese Americans. Diabetes Care. 2012;35:296–8.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Oh H, Kwak S-Y, Jo G, Lee J, Park D, Lee DH, et al. Adiposity and mortality in Korean adults: a population-based prospective cohort study. Am J Clin Nutr. 2020;113:142–53.

    Article  Google Scholar 

  67. Ortega FB, Sui X, Lavie CJ, Blair SN. Body Mass Index, the Most Widely Used But Also Widely Criticized Index: Would a Criterion Standard Measure of Total Body Fat Be a Better Predictor of Cardiovascular Disease Mortality? Mayo Clin Proc. 2016;91:443–55. https://doi.org/10.1016/j.mayocp.2016.01.008.

    Article  PubMed  Google Scholar 

  68. Wannamethee SG, Shaper AG, Lennon L, Whincup PH. Decreased muscle mass and increased central adiposity are independently related to mortality in older men. Am J Clin Nutr. 2007;86:1339–46.

    Article  CAS  PubMed  Google Scholar 

  69. Flegal KM, Ioannidis JP. The obesity paradox: a misleading term that should be abandoned. Obesity. 2018;26:629–30.

    Article  PubMed  Google Scholar 

  70. Bergman RN, Kim SP, Catalano KJ, Hsu IR, Chiu JD, Kabir M, et al. Why visceral fat is bad: mechanisms of the metabolic syndrome. Obesity. 2006;14:16S.

    Article  CAS  PubMed  Google Scholar 

  71. Pandžić Jakšić V, Grizelj D. Under the surface of subcutaneous adipose tissue biology. Acta Dermatovenerol Croat. 2016;24:250–250.

    PubMed  Google Scholar 

  72. Bidulescu A, Liu J, Hickson DA, Hairston KG, Fox ER, Arnett DK, et al. Gender differences in the association of visceral and subcutaneous adiposity with adiponectin in African Americans: the Jackson Heart Study. BMC Cardiovasc Disord. 2013;13:1–10.

    Article  Google Scholar 

  73. Fox C, Massaro J, Hoffmann U, Pou K, Maurovich-Horvat P, Liu C-Y. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation. 2007;116:39–48.

    Article  PubMed  Google Scholar 

  74. Liu J, Fox CS, Hickson DA, May WD, Hairston KG, Carr JJ, et al. Impact of abdominal visceral and subcutaneous adipose tissue on cardiometabolic risk factors: the Jackson Heart Study. J Clin Endocrinol Metab. 2010;95:5419–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Oka R, Yagi K, Sakurai M, Nakamura K, Nagasawa S-y, Miyamoto S, et al. Impact of visceral adipose tissue and subcutaneous adipose tissue on insulin resistance in middle-aged Japanese. J Atheroscler Thromb. 2012;12294:814–22.

    Article  Google Scholar 

  76. Böhm A, Heitmann B. The use of bioelectrical impedance analysis for body composition in epidemiological studies. Eur J Clin Nutr. 2013;67:S79–S85.

    Article  PubMed  Google Scholar 

  77. Jaffrin MY. Body composition determination by bioimpedance: an update. Curr Opin Clin Nutr Metab Care. 2009;12:482–6.

    Article  PubMed  Google Scholar 

  78. Ward LC. Bioelectrical impedance analysis for body composition assessment: reflections on accuracy, clinical utility, and standardisation. Eur J Clin Nutr. 2019;73:194–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AJ contributed to the study conception, literature search, data extraction, data analysis, and manuscript drafting. AE contributed to the literature search, data extraction, and manuscript drafting. SSB contributed to study conception, data analysis, and manuscript drafting. TK contributed to the data analysis, provided STATA syntax for dose-response meta-analysis, and approving the final manuscript. DA critically revised the manuscript and contributed to the interpretation of the findings. All authors acknowledge full responsibility for the analyses and interpretation of the report. All authors have read and approved the final manuscript. SS-B is the guarantor. The corresponding author attests that all listed authors meet authorship criteria and that no others meeting the criteria have been omitted.

Corresponding author

Correspondence to Sakineh Shab-Bidar.

Ethics declarations

Competing interests

AJ, DA, AE, and SSB: have no relevant financial or non-financial interests to disclose. Dr. Tauseef A Khan has received research support from the Canadian Institutes of Health Research (CIHR), the International Life Science Institute (ILSI), and National Honey Board, outside the submitted work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayedi, A., Khan, T.A., Aune, D. et al. Body fat and risk of all-cause mortality: a systematic review and dose-response meta-analysis of prospective cohort studies. Int J Obes 46, 1573–1581 (2022). https://doi.org/10.1038/s41366-022-01165-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-022-01165-5

This article is cited by

Search

Quick links