Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Early effects of Roux-en-Y gastric bypass on dietary fatty acid absorption and metabolism in people with obesity and normal glucose tolerance

Subjects

Abstract

Introduction

Roux-en-Y gastric bypass (RYGB) surgery markedly increases the rate of intestinal nutrient exposure after food intake, accelerates intestinal absorption of dietary glucose and protein, and alters the postprandial gut hormone response. However, our understanding of postprandial fat absorption and metabolism after RYGB is incomplete.

Methods

Stable palmitate tracers were administered intravenously (K-[2,2-2H2]palmitate) and orally with a mixed meal ([U-13C16]palmitate) to study fatty acid absorption and metabolism before and 3 months after RYGB in 10 participants with obesity and normal glucose tolerance.

Results

There was a tendency toward reduced fasting plasma nonesterified palmitate concentrations after RYGB, but neither fasting palmitate kinetics nor fasting triacylglycerol (TAG) concentrations changed compared with before surgery. Postprandial TAG concentrations were numerically, but nonsignificantly, reduced 3−4 h after meal intake after compared with before RYGB. However, the postprandial appearance of the oral palmitate tracer in the plasma TAG pool and overflow into the nonesterified palmitate pool were initially faster but overall reduced after RYGB by 50% (median, IQR: [47;64], P = 0.004) and 46% (median, IQR: [33;70], P = 0.041), respectively. The maximal postprandial suppression of plasma nonesterified palmitate concentrations was slightly greater but shorter lasting after RYGB ('time × visit' interaction: P < 0.001), without detectable effects of surgery on the rate of appearance and disappearance of plasma palmitate.

Conclusion

RYGB resulted in an initially accelerated but overall ~50% reduced 4-h postprandial systemic appearance of dietary palmitate in participants with obesity and normal glucose tolerance. This is likely a result of faster but incomplete intestinal fat absorption combined with enhanced chylomicron–TAG clearance, but it needs further investigation in studies specifically designed to investigate these mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Plasma TAG concentrations and the fate of meal-derived palmitate.
Fig. 2: Plasma nonesterified palmitate concentrations and kinetics, and insulin concentrations.

Similar content being viewed by others

Data availability

Reasonable requests for access to the datasets should be addressed to the corresponding author.

References

  1. Sjöström L, Peltonen M, Jacobson P, Sjöström CD, Karason K, Wedel H, et al. Bariatric surgery and long-term cardiovascular events. JAMA. 2012;307:56–65. https://doi.org/10.1001/jama.2011.1914.

    Article  PubMed  Google Scholar 

  2. Sjöström L. Review of the key results from the Swedish Obese Subjects (SOS) trial - a prospective controlled intervention study of bariatric surgery. J Intern Med. 2013;273:219–34. https://doi.org/10.1111/joim.12012.

    Article  PubMed  Google Scholar 

  3. Li J, Lai D, Wu D. Laparoscopic Roux-en-Y gastric bypass versus laparoscopic sleeve gastrectomy to treat morbid obesity-related comorbidities: a systematic review and meta-analysis. Obes Surg. 2016;26:429–42. https://doi.org/10.1007/s11695-015-1996-9.

    Article  PubMed  Google Scholar 

  4. Holst JJ, Madsbad S, Bojsen-Møller KN, Svane MS, Jørgensen NB, Dirksen C, et al. Mechanisms in bariatric surgery: gut hormones, diabetes resolution, and weight loss. Surg Obes Relat Dis. 2018;14:708–14. https://doi.org/10.1016/j.soard.2018.03.003.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Heffron SP, Parikh A, Volodarskiy A, Ren-Fielding C, Schwartzbard A, Nicholson J, et al. Changes in lipid profile of obese patients following contemporary bariatric surgery: a meta-analysis. Am J Med. 2016;129:952–9. https://doi.org/10.1016/j.amjmed.2016.02.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bays H, Kothari SN, Azagury DE, Morton JM, Nguyen NT, Jones PH, et al. Lipids and bariatric procedures part 2 of 2: scientific statement from the American Society for Metabolic and Bariatric Surgery (ASMBS), the National Lipid Association (NLA), and Obesity Medicine Association (OMA). Surg Obes Relat Dis. 2016;12:468–95. https://doi.org/10.1016/j.soard.2016.01.007.

    Article  PubMed  Google Scholar 

  7. Kwok CS, Pradhan A, Khan MA, Anderson SG, Keavney BD, Myint PK, et al. Bariatric surgery and its impact on cardiovascular disease and mortality: a systematic review and meta-analysis. Int J Cardiol. 2014;173:20–8. https://doi.org/10.1016/j.ijcard.2014.02.026.

    Article  PubMed  Google Scholar 

  8. Douros JD, Tong J, D’Alessio DA. The effects of bariatric surgery on islet function, insulin secretion, and glucose control. Endocr Rev. 2019;40:1394–423. https://doi.org/10.1210/er.2018-00183.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dirksen C, Jørgensen NB, Bojsen-Møller KN, Kielgast U, Jacobsen SH, Clausen TR, et al. Gut hormones, early dumping and resting energy expenditure in patients with good and poor weight loss response after Roux-en-Y gastric bypass. Int J Obes. 2013;37:1452–9. https://doi.org/10.1038/ijo.2013.15.

    Article  CAS  Google Scholar 

  10. Dirksen C, Graff J, Fuglsang S, Rehfeld JF, Holst JJ, Madsen JL. Energy intake, gastrointestinal transit, and gut hormone release in response to oral triglycerides and fatty acids in men with and without severe obesity. Am J Physiol Gastrointest Liver Physiol. 2019;316:G332–7. https://doi.org/10.1152/ajpgi.00310.2018.

    Article  CAS  PubMed  Google Scholar 

  11. Eiken A, Fuglsang S, Eiken M, Svane MS, Kuhre RE, Wewer Albrechtsen NJ, et al. Bilio-enteric flow and plasma concentrations of bile acids after gastric bypass and sleeve gastrectomy. Int J Obes. 2020; https://doi.org/10.1038/s41366-020-0578-7.

  12. Bojsen-Møller KN, Jacobsen SH, Dirksen C, Jørgensen NB, Reitelseder S, Jensen J-EB, et al. Accelerated protein digestion and amino acid absorption after Roux-en-Y gastric bypass. Am J Clin Nutr. 2015;102:600–7. https://doi.org/10.3945/ajcn.115.109298.

    Article  CAS  PubMed  Google Scholar 

  13. Jacobsen SH, Bojsen-Møller KN, Dirksen C, Jørgensen NB, Clausen TR, Wulff BS, et al. Effects of gastric bypass surgery on glucose absorption and metabolism during a mixed meal in glucose-tolerant individuals. Diabetologia. 2013;56:2250–4. https://doi.org/10.1007/s00125-013-3003-0.

    Article  CAS  PubMed  Google Scholar 

  14. Svane MS, Bojsen-Møller KN, Martinussen C, Dirksen C, Madsen JL, Reitelseder S, et al. Postprandial nutrient handling and gastrointestinal secretion of hormones after Roux-en-Y gastric bypass vs sleeve gastrectomy. Gastroenterology. 2019;156:1627–41. https://doi.org/10.1053/j.gastro.2019.01.262.

    Article  PubMed  Google Scholar 

  15. Jensen CZ, Bojsen-Møller KN, Svane MS, Holst LM, Hermansen K, Hartmann B, et al. Responses of gut and pancreatic hormones, bile acids, and fibroblast growth factor-21 differ to glucose, protein, and fat ingestion after gastric bypass surgery. Am J Physiol Gastrointest Liver Physiol. 2020;318:G661–72. https://doi.org/10.1152/ajpgi.00265.2019.

    Article  CAS  PubMed  Google Scholar 

  16. Griffo E, Cotugno M, Nosso G, Saldalamacchia G, Mangione A, Angrisani L, et al. Effects of sleeve gastrectomy and gastric bypass on postprandial lipid profile in obese type 2 diabetic patients: a 2-year follow-up. Obes Surg. 2016;26:1247–53. https://doi.org/10.1007/s11695-015-1891-4.

    Article  CAS  PubMed  Google Scholar 

  17. Griffo E, Nosso G, Lupoli R, Cotugno M, Saldalamacchia G, Vitolo G, et al. Early improvement of postprandial lipemia after bariatric surgery in obese type 2 diabetic patients. Obes Surg. 2014;24:765–70. https://doi.org/10.1007/s11695-013-1148-z.

    Article  CAS  PubMed  Google Scholar 

  18. Liaskos C, Koliaki C, Alexiadou K, Argyrakopoulou G, Tentolouris N, Diamantis T, et al. Roux-en-Y gastric bypass is more effective than sleeve gastrectomy in improving postprandial glycaemia and lipaemia in non-diabetic morbidly obese patients: a short-term follow-up analysis. Obes Surg. 2018;28:3997–4005. https://doi.org/10.1007/s11695-018-3454-y.

    Article  PubMed  Google Scholar 

  19. De Giorgi S, Campos V, Egli L, Toepel U, Carrel G, Cariou B, et al. Long-term effects of Roux-en-Y gastric bypass on postprandial plasma lipid and bile acids kinetics in female non diabetic subjects: a cross-sectional pilot study. Clin Nutr. 2015;34:911–7. https://doi.org/10.1016/j.clnu.2014.09.018.

    Article  CAS  PubMed  Google Scholar 

  20. Carswell KA, Belgaumkar AP, Amiel SA, Patel AG. A systematic review and meta-analysis of the effect of gastric bypass surgery on plasma lipid levels. Obes Surg. 2016;26:843–55. https://doi.org/10.1007/s11695-015-1829-x.

    Article  PubMed  Google Scholar 

  21. Jegatheesan P, Seyssel K, Stefanoni N, Rey V, Schneiter P, Giusti V, et al. Effects of gastric bypass surgery on postprandial gut and systemic lipid handling. Clin Nutr ESPEN. 2020;35:95–102. https://doi.org/10.1016/j.clnesp.2019.11.002.

    Article  PubMed  Google Scholar 

  22. Moreland AM, Santa Ana CA, Asplin JR, Kuhn JA, Holmes RP, Cole JA, et al. Steatorrhea and hyperoxaluria in severely obese patients before and after Roux-en-Y gastric bypass. Gastroenterology. 2017;152:1055–67e3. https://doi.org/10.1053/j.gastro.2017.01.004.

    Article  CAS  PubMed  Google Scholar 

  23. Odstrcil EA, Martinez JG, Santa Ana CA, Xue B, Schneider RE, Steffer KJ, et al. The contribution of malabsorption to the reduction in net energy absorption after long-limb Roux-en-Y gastric bypass. Am J Clin Nutr. 2010;92:704–13. https://doi.org/10.3945/ajcn.2010.29870.

    Article  CAS  PubMed  Google Scholar 

  24. Van Hall G, Bülow J, Sacchetti M, Al Mulla N, Lyngso D, Simonsen L. Regional fat metabolism in human splanchnic and adipose tissues; the effect of exercise. J Physiol. 2002;543:1033–46. https://doi.org/10.1113/jphysiol.2002.022392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sacchetti M, Saltin B, Olsen DB, van Hall G. High triacylglycerol turnover rate in human skeletal muscle. J Physiol. 2004;561:883–91. https://doi.org/10.1113/jphysiol.2004.075135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–9. https://doi.org/10.1007/bf00280883.

    Article  CAS  PubMed  Google Scholar 

  27. Carreau A-M, Noll C, Blondin DP, Frisch F, Nadeau M, Pelletier M, et al. Bariatric surgery rapidly decreases cardiac dietary fatty acid partitioning and hepatic insulin resistance through increased intra-abdominal adipose tissue storage and reduced spillover in type 2 diabetes. Diabetes. 2020;69:567–77. https://doi.org/10.2337/db19-0773.

    Article  CAS  PubMed  Google Scholar 

  28. Heath RB, Karpe F, Milne RW, Burdge GC, Wootton SA, Frayn KN. Selective partitioning of dietary fatty acids into the VLDL TG pool in the early postprandial period. J Lipid Res. 2003;44:2065–72. https://doi.org/10.1194/jlr.M300167-JLR200.

    Article  CAS  PubMed  Google Scholar 

  29. Heath RB, Karpe F, Milne RW, Burdge GC, Wootton SA, Frayn KN. Dietary fatty acids make a rapid and substantial contribution to VLDL-triacylglycerol in the fed state. Am J Physiol Endocrinol Metab. 2007;292:E732–739. https://doi.org/10.1152/ajpendo.00409.2006.

    Article  CAS  PubMed  Google Scholar 

  30. Yoshimura N, Kinoshita M, Teramoto T. Isolation and characterization of apolipoprotein B48-containing lipoproteins with a monoclonal antibody against apolipoprotein B48. J Atheroscler Thromb. 2009;16:740–7. https://doi.org/10.5551/jat.no976.

    Article  CAS  PubMed  Google Scholar 

  31. Magkos F, Fabbrini E, McCrea J, Patterson BW, Eagon JC, Klein S. Decrease in hepatic very-low-density lipoprotein-triglyceride secretion after weight loss is inversely associated with changes in circulating leptin. Diabetes Obes Metab. 2010;12:584–90. https://doi.org/10.1111/j.1463-1326.2009.01191.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Padilla N, Maraninchi M, Béliard S, Berthet B, Nogueira J-P, Wolff E, et al. Effects of bariatric surgery on hepatic and intestinal lipoprotein particle metabolism in obese, nondiabetic humans. Arterioscler Thromb Vasc Biol. 2014;34:2330–7. https://doi.org/10.1161/ATVBAHA.114.303849.

    Article  CAS  PubMed  Google Scholar 

  33. Saviana B, Quilliot D, Ziegler O, Bigard MA, Drouin P, Guéant JL. Diagnosis of lipid malabsorption in patients with chronic pancreatitis: a new indirect test using postprandial plasma apolipoprotein B-48. Am J Gastroenterol. 1999;94:3229–35. https://doi.org/10.1111/j.1572-0241.1999.01524.x.

    Article  CAS  PubMed  Google Scholar 

  34. Taskinen M-R, Björnson E, Matikainen N, Söderlund S, Pietiläinen KH, Ainola M, et al. Effects of liraglutide on the metabolism of triglyceride-rich lipoproteins in type 2 diabetes. Diabetes Obes Metab. 2021;23:1191–201. https://doi.org/10.1111/dom.14328.

    Article  CAS  PubMed  Google Scholar 

  35. Bozzetto L, Annuzzi G, Corte GD, Patti L, Cipriano P, Mangione A, et al. Ezetimibe beneficially influences fasting and postprandial triglyceride-rich lipoproteins in type 2 diabetes. Atherosclerosis. 2011;217:142–8. https://doi.org/10.1016/j.atherosclerosis.2011.03.012.

    Article  CAS  PubMed  Google Scholar 

  36. O’Keefe SJD, Rakitt T, Ou J, El Hajj II, Blaney E, Vipperla K, et al. Pancreatic and intestinal function post Roux-en-Y gastric bypass surgery for obesity. Clin Transl Gastroenterol. 2017;8:e112. https://doi.org/10.1038/ctg.2017.39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Käkelä P, Männistö V, Vaittinen M, Venesmaa S, Kärjä V, Virtanen K, et al. Small intestinal length associates with serum triglycerides before and after LRYGB. Obes Surg. 2018;28:3969–75. https://doi.org/10.1007/s11695-018-3447-x.

    Article  PubMed  Google Scholar 

  38. Xiao C, Bandsma RHJ, Dash S, Szeto L, Lewis GF. Exenatide, a glucagon-like peptide-1 receptor agonist, acutely inhibits intestinal lipoprotein production in healthy humans. Arterioscler Thromb Vasc Biol. 2012;32:1513–9. https://doi.org/10.1161/ATVBAHA.112.246207.

    Article  CAS  PubMed  Google Scholar 

  39. Vergès B, Duvillard L, Pais de Barros JP, Bouillet B, Baillot-Rudoni S, Rouland A, et al. Liraglutide reduces postprandial hyperlipidemia by increasing ApoB48 (Apolipoprotein B48) catabolism and by reducing ApoB48 production in patients with type 2 diabetes mellitus. Arterioscler Thromb Vasc Biol. 2018;38:2198–206. https://doi.org/10.1161/ATVBAHA.118.310990.

    Article  CAS  PubMed  Google Scholar 

  40. Fielding BA, Frayn KN. Lipoprotein lipase and the disposition of dietary fatty acids. Br J Nutr. 1998;80:495–502. https://doi.org/10.1017/s0007114598001585.

    Article  CAS  PubMed  Google Scholar 

  41. Martinussen C, Dirksen C, Bojsen-Møller KN, Svane MS, Carlsson ER, Hartmann B, et al. Intestinal sensing and handling of dietary lipids in gastric bypass-operated patients and matched controls. Am J Clin Nutr. 2019. https://doi.org/10.1093/ajcn/nqz272.

Download references

Acknowledgements

We thank Siv Hesse Jacobsen (Hvidovre Hospital, Denmark) for her important role in the practical conduct of the study. Moreover, this work relied on professional help from Dorthe Baunbjerg Nielsen, Sussi Polmann, and Alis Sloth Andersen (Hvidovre Hospital, Denmark) and Daniel Halling Breiner (Clinical Metabolomics Core Facility, Clinical Biochemistry, Rigshospitalet, Denmark).

M.H. and K.N.B.-M. are funded by a Novo Nordic Foundation Excellence Project Grant (NNF18 OC0032330).

Author information

Authors and Affiliations

Authors

Contributions

M.H. performed the statistical data analysis and graphical presentation of the results, wrote the paper, and is primarily responsible for the final content of the paper. K.N.B.-M. contributed to the design and practical conduct of the study, data generation and analysis, and discussion; and reviewed/edited the paper. V.B.K. contributed to data analysis and discussion and reviewed/edited the paper. S.M. initiated the study and together with J.J.H. and G.v.H. contributed to the design of the study, data generation and analysis and discussion, and reviewed/edited the paper. All authors approved the final version of the paper before submission.

Corresponding author

Correspondence to Morten Hindsø.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hindsø, M., Bojsen-Møller, K.N., Kristiansen, V.B. et al. Early effects of Roux-en-Y gastric bypass on dietary fatty acid absorption and metabolism in people with obesity and normal glucose tolerance. Int J Obes 46, 1359–1365 (2022). https://doi.org/10.1038/s41366-022-01123-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-022-01123-1

Search

Quick links