Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanisms of reduced leptin-mediated satiety signaling during obesity

Subjects

Abstract

Background/Objectives

Disrupted leptin signaling in vagal afferent neurons contributes to hyperphagia and obesity. Thus, we tested the hypothesis that intrinsic negative regulators of leptin signaling, suppressor of cytokine signaling 3 (SOCS3) and protein tyrosine phosphatase 1B (PTP1B) underlie dysfunctional leptin-mediated vagal afferent satiety signaling during obesity.

Methods

Experiments were performed on standard chow-fed control mice, high-fat fed (HFF), or low-fat fed (LFF) mice. SOCS3 and PTP1B expression were quantified using western blot and quantitative PCR. Nodose ganglion neuronal excitability and jejunal afferent sensitivity were measured by patch clamp and extracellular afferent recordings, respectively.

Results

Increased expression of SOCS3 and PTP1B were observed in the jejunum of HFF mice. Prolonged incubation with leptin attenuated nodose ganglion neuronal excitability, and this effect was reversed by inhibition of SOCS3. Leptin potentiated jejunal afferent nerve responses to CCK in LFF mice but decreased them in HFF mice. Inhibition of SOCS3 restored impaired vagal afferent neuronal excitability and afferent nerve responses to satiety mediators during obesity. Two-pore domain K+ channel (K2P) conductance and nitric oxide (NO) production that we previously demonstrated were elevated during obesity were decreased by inhibitions of SOCS3 or PTP1B.

Conclusions

This study suggests that obesity impairs vagal afferent sensitivity via SOCS3 and PTP1B, likely as a consequence of obesity-induced hyperleptinemia. The mechanisms underlying leptin resistance appear also to cause a more global impairment of satiety-related vagal afferent responsiveness.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SOCS3 and PTP1B expression were increased in HFF mice jejunum.
Fig. 2: Leptin attenuated the excitability of nodose ganglion neurons and this was recovered by inhibitions of SOCS3.
Fig. 3: Inhibition of SOCS3 and PTP1B restored nodose neuron excitability in HFF mice.
Fig. 4: Leptin potentiated CCK signaling in LFF mice whereas inhibited it via SOCS3 regulation in HFF mice.
Fig. 5: Inhibition of SOCS3 increased afferent responses to CCK and 5-HT in HFF mice.
Fig. 6: Inhibition of SOCS3 or PTP1B decreased K2P conductance and NO production in HFF mice.

Similar content being viewed by others

References

  1. Gonzalez-Muniesa P, Martinez-Gonzalez MA, Hu FB, Despres JP, Matsuzawa Y, Loos RJF, et al. Obesity. Nat Rev. Dis Primers. 2017;3:17034.

    Article  PubMed  Google Scholar 

  2. Sainz N, Barrenetxe J, Moreno-Aliaga MJ, Martinez JA. Leptin resistance and diet-induced obesity: central and peripheral actions of leptin. Metabolism. 2015;64:35–46.

    Article  CAS  PubMed  Google Scholar 

  3. Verhaegen AA, Van Gaal LF. Drug-induced obesity and its metabolic consequences: a review with a focus on mechanisms and possible therapeutic options. J Endocrinol Investig. 2017;40:1165–74.

    Article  CAS  Google Scholar 

  4. Kachur S, Lavie CJ, de Schutter A, Milani RV, Ventura HO. Obesity and cardiovascular diseases. Minerva Medica. 2017;108:212–28.

    Article  PubMed  Google Scholar 

  5. Cui H, Lopez M, Rahmouni K. The cellular and molecular bases of leptin and ghrelin resistance in obesity. Nat Rev Endocrinol. 2017;13:338–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Daly DM, Park SJ, Valinsky WC, Beyak MJ. Impaired intestinal afferent nerve satiety signalling and vagal afferent excitability in diet induced obesity in the mouse. J Physiol. 2011;589:2857–70. Pt 11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Engin A. Diet-Induced Obesity and the Mechanism of Leptin Resistance. Adv Exp Med Biol. 2017;960:381–97.

    Article  CAS  PubMed  Google Scholar 

  8. Flak JN, Myers MG Jr. Minireview: CNS Mechanisms of Leptin Action. Mol Endocrinol. 2016;30:3–12.

    Article  CAS  PubMed  Google Scholar 

  9. Emilsson V, Liu YL, Cawthorne MA, Morton NM, Davenport M. Expression of the functional leptin receptor mRNA in pancreatic islets and direct inhibitory action of leptin on insulin secretion. Diabetes. 1997;46:313–6.

    Article  CAS  PubMed  Google Scholar 

  10. Wang MY, Lee Y, Unger RH. Novel form of lipolysis induced by leptin. J Biol Chem. 1999;274:17541–4.

    Article  CAS  PubMed  Google Scholar 

  11. Morris DL, Rui L. Recent advances in understanding leptin signaling and leptin resistance. Am J Physiol Endocrinol Metab. 2009;297:E1247–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Villanueva EC, Myers MG Jr. Leptin receptor signaling and the regulation of mammalian physiology. Int J Obes (Lond). 2008;32:S8–12. Suppl 7

    Article  CAS  Google Scholar 

  13. Crujeiras AB, Carreira MC, Cabia B, Andrade S, Amil M, Casanueva FF. Leptin resistance in obesity: an epigenetic landscape. Life Sci. 2015;140:57–63.

    Article  CAS  PubMed  Google Scholar 

  14. Starr R, Willson TA, Viney EM, Murray LJ, Rayner JR, Jenkins BJ, et al. A family of cytokine-inducible inhibitors of signalling. Nature. 1997;387:917–21.

    Article  CAS  PubMed  Google Scholar 

  15. Myers MP, Andersen JN, Cheng A, Tremblay ML, Horvath CM, Parisien JP, et al. TYK2 and JAK2 are substrates of protein-tyrosine phosphatase 1B. J Biol Chem. 2001;276:47771–4.

    Article  CAS  PubMed  Google Scholar 

  16. Zabolotny JM, Bence-Hanulec KK, Stricker-Krongrad A, Haj F, Wang Y, Minokoshi Y, et al. PTP1B regulates leptin signal transduction in vivo. Dev Cell. 2002;2:489–95.

    Article  CAS  PubMed  Google Scholar 

  17. Kaszubska W, Falls HD, Schaefer VG, Haasch D, Frost L, Hessler P, et al. Protein tyrosine phosphatase 1B negatively regulates leptin signaling in a hypothalamic cell line. Mol Cell Endocrinol. 2002;195:109–18.

    Article  CAS  PubMed  Google Scholar 

  18. Auernhammer CJ, Bousquet C, Melmed S. Autoregulation of pituitary corticotroph SOCS-3 expression: characterization of the murine SOCS-3 promoter. Proc Natl Acad Sci USA. 1999;96:6964–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cassatella MA, Gasperini S, Bovolenta C, Calzetti F, Vollebregt M, Scapini P, et al. Interleukin-10 (IL-10) selectively enhances CIS3/SOCS3 mRNA expression in human neutrophils: evidence for an IL-10-induced pathway that is independent of STAT protein activation. Blood. 1999;94:2880–9.

    Article  CAS  PubMed  Google Scholar 

  20. Gatto L, Berlato C, Poli V, Tininini S, Kinjyo I, Yoshimura A, et al. Analysis of SOCS-3 promoter responses to interferon gamma. J Biol Chem. 2004;279:13746–54.

    Article  CAS  PubMed  Google Scholar 

  21. Bjorbaek C, Elmquist JK, Frantz JD, Shoelson SE, Flier JS. Identification of SOCS-3 as a potential mediator of central leptin resistance. Mol Cell. 1998;1:619–25.

    Article  CAS  PubMed  Google Scholar 

  22. Zhou Y, Rui L. Leptin signaling and leptin resistance. Front Med. 2013;7:207–22.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Blackshaw LA, Brookes SJ, Grundy D, Schemann M. Sensory transmission in the gastrointestinal tract. Neurogastroenterol Motil. 2007;19:1–19. 1 Suppl

    Article  CAS  PubMed  Google Scholar 

  24. de Lartigue G, Ronveaux CC, Raybould HE. Deletion of leptin signaling in vagal afferent neurons results in hyperphagia and obesity. Mol Metab. 2014;3:595–607.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. de Lartigue G, Barbier de la Serre C, Espero E, Lee J, Raybould HE. Diet-induced obesity leads to the development of leptin resistance in vagal afferent neurons. Am J Physiol Endocrinol Metab. 2011;301:E187–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. de Lartigue G, Barbier de la Serre C, Espero E, Lee J, Raybould HE. Leptin resistance in vagal afferent neurons inhibits cholecystokinin signaling and satiation in diet induced obese rats. PloS ONE. 2012;7:e32967.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Yu Y, Park SJ, Beyak MJ. Inducible nitric oxide synthase-derived nitric oxide reduces vagal satiety signalling in obese mice. J Physiol. 2019;597:1487–502.

    Article  CAS  PubMed  Google Scholar 

  28. Nakamura R, Sene A, Santeford A, Gdoura A, Kubota S, Zapata N, et al. IL10-driven STAT3 signalling in senescent macrophages promotes pathological eye angiogenesis. Nat Commun. 2015;6:7847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Torii S, Kubota C, Saito N, Kawano A, Hou N, Kobayashi M, et al. The pseudophosphatase phogrin enables glucose-stimulated insulin signaling in pancreatic beta cells. J Biol Chem. 2018;293:5920–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lesage F, Guillemare E, Fink M, Duprat F, Lazdunski M, Romey G, et al. TWIK-1, a ubiquitous human weakly inward rectifying K+ channel with a novel structure. EMBO J. 1996;15:1004–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Scheller EL, Hankenson KD, Reuben JS, Krebsbach PH. Zoledronic acid inhibits macrophage SOCS3 expression and enhances cytokine production. J Cell Biochem. 2011;112:3364–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Furfine ES, Harmon MF, Paith JE, Garvey EP. Selective inhibition of constitutive nitric oxide synthase by L-NG-nitroarginine. Biochemistry. 1993;32:8512–7.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang S, Zhang ZY. PTP1B as a drug target: recent developments in PTP1B inhibitor discovery. Drug Discov Today. 2007;12:373–81.

    Article  CAS  PubMed  Google Scholar 

  34. Ishino Y, Zhu C, Harris DL, Joyce NC. Protein tyrosine phosphatase-1B (PTP1B) helps regulate EGF-induced stimulation of S-phase entry in human corneal endothelial cells. Mol Vis. 2008;14:61–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kuchay SM, Kim N, Grunz EA, Fay WP, Chishti AH. Double Knockouts Reveal that Protein Tyrosine Phosphatase 1B Is a Physiological Target of Calpain-1 in Platelets. Mol Cell Biol. 2007;27:6038–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhao SG, Zhu Y, Schultz RD, Li N, He ZY, Zhang ZZ, et al. Partial Leptin Reduction as an Insulin Sensitization and Weight Loss Strategy. Cell Metab. 2019;30:706–+.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yuan M, Huang GZ, Li J, Zhang J, Li F, Li K, et al. Hyperleptinemia directly affects testicular maturation at different sexual stages in mice, and suppressor of cytokine signaling 3 is involved in this process. Reprod Biol Endocrin. 2014;12:15–27.

    Article  CAS  Google Scholar 

  38. Mercer RE, Michaelson SD, Chee MJS, Atallah TA, Wevrick R, Colmers WF. et al. Magel2 Is Required for Leptin-Mediated Depolarization of POMC Neurons in the Hypothalamic Arcuate Nucleus in Mice. Plos Genet . 2013;9:e1003207.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Barrachina MD, Martínez V, Wang L, Wei JY, Taché Y. Synergistic interaction between leptin and cholecystokinin to reduce short-term food intake in lean mice. Proc Natl Acad Sci USA. 1997;94:10455–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Peters JH, Ritter RC, Simasko SM. Leptin and CCK modulate complementary background conductances to depolarize cultured nodose neurons. Am J Physiol Cell Physiol. 2006;290:C427–32.

    Article  CAS  PubMed  Google Scholar 

  41. Peters JH, Karpiel AB, Ritter RC, Simasko SM. Cooperative activation of cultured vagal afferent neurons by leptin and cholecystokinin. Endocrinology. 2004;145:3652–7.

    Article  CAS  PubMed  Google Scholar 

  42. Kentish SJ, O’Donnell TA, Isaacs NJ, Young RL, Li H, Harrington AM, et al. Gastric vagal afferent modulation by leptin is influenced by food intake status. J Physiol. 2013;591:1921–34.

    Article  CAS  PubMed  Google Scholar 

  43. Huang KP, Goodson ML, Vang W, Li H, Page AJ, Raybould HE. Leptin signaling in vagal afferent neurons supports the absorption and storage of nutrients from high-fat diet. Int J Obes (Lond). 2021;45:348–57.

    Article  CAS  Google Scholar 

  44. Howard JK, Cave BJ, Oksanen LJ, Tzameli I, Bjorbaek C, Flier JS. Enhanced leptin sensitivity and attenuation of diet-induced obesity in mice with haploinsufficiency of Socs3. Nat Med. 2004;10:734–8.

    Article  CAS  PubMed  Google Scholar 

  45. Mori H, Hanada R, Hanada T, Aki D, Mashima R, Nishinakamura H, et al. Socs3 deficiency in the brain elevates leptin sensitivity and confers resistance to diet-induced obesity. Nat Med. 2004;10:739–43.

    Article  CAS  PubMed  Google Scholar 

  46. Tsou RC, Zimmer DJ, De Jonghe BC, Bence KK. Deficiency of PTP1B in leptin receptor-expressing neurons leads to decreased body weight and adiposity in mice. Endocrinology. 2012;153:4227–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Heldsinger A, Grabauskas G, Wu X, Zhou S, Lu Y, Song I, et al. Ghrelin induces leptin resistance by activation of suppressor of cytokine signaling 3 expression in male rats: implications in satiety regulation. Endocrinology. 2014;155:3956–69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. White CL, Whittington A, Barnes MJ, Wang Z, Bray GA, Morrison CD. HF diets increase hypothalamic PTP1B and induce leptin resistance through both leptin-dependent and -independent mechanisms. Am J Physiol Endocrinol Metab. 2009;296:E291–9.

    Article  CAS  PubMed  Google Scholar 

  49. Narayanaswami V, Dwoskin LP. Obesity: Current and potential pharmacotherapeutics and targets. Pharmacol Ther. 2017;170:116–47.

    Article  CAS  PubMed  Google Scholar 

  50. Enriori PJ, Evans AE, Sinnayah P, Jobst EE, Tonelli-Lemos L, Billes SK, et al. Diet-induced obesity causes severe but reversible leptin resistance in arcuate melanocortin neurons. Cell Metab. 2007;5:181–94.

    Article  CAS  PubMed  Google Scholar 

  51. Kiu H, Greenhalgh CJ, Thaus A, Hilton DJ, Nicola NA, Alexander WS, et al. Regulation of multiple cytokine signalling pathways by SOCS3 is independent of SOCS2. Growth Factors. 2009;27:384–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sinha MK, Ohannesian JP, Heiman ML, Kriauciunas A, Stephens TW, Magosin S, et al. Nocturnal rise of leptin in lean, obese, and non-insulin-dependent diabetes mellitus subjects. J Clin Invesig. 1996;97:1344–7.

    Article  CAS  Google Scholar 

  53. Gavello D, Carbone E, Carabelli V. Leptin-mediated ion channel regulation: PI3K pathways, physiological role, and therapeutic potential. Channels (Austin). 2016;10:282–96.

    Article  PubMed Central  Google Scholar 

  54. Becerril S, Rodriguez A, Catalan V, Mendez-Gimenez L, Ramirez B, Sainz N, et al. Targeted disruption of the iNOS gene improves adipose tissue inflammation and fibrosis in leptin-deficient ob/ob mice: role of tenascin C. Int J Obes (Lond). 2018;42:1458–70.

    Article  CAS  Google Scholar 

  55. Rodriguez A, Fortuno A, Gomez-Ambrosi J, Zalba G, Diez J, Fruhbeck G. The inhibitory effect of leptin on angiotensin II-induced vasoconstriction in vascular smooth muscle cells is mediated via a nitric oxide-dependent mechanism. Endocrinology. 2007;148:324–31.

    Article  CAS  PubMed  Google Scholar 

  56. Vuolteenaho K, Koskinen A, Kukkonen M, Nieminen R, Paivarinta U, Moilanen T, et al. Leptin enhances synthesis of proinflammatory mediators in human osteoarthritic cartilage−mediator role of NO in leptin-induced PGE2, IL-6, and IL-8 production. Mediators Inflamm. 2009;2009:345838.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Park SJ, Yu Y, Wagner B, Valinsky WC, Lomax AE, Beyak MJ. Increased TASK channel-mediated currents underlie high-fat diet induced vagal afferent dysfunction. Am J Physiol Gastrointest Liver Physiol. 2018;315:G592–G601.

    Article  CAS  PubMed  Google Scholar 

  58. Grabauskas G, Wu X, Zhou S, Li J, Gao J, Owyang C, et al. High-fat diet-induced vagal afferent dysfunction via upregulation of 2-pore domain potassium TRESK channel. JCI Insight . 2019;4:e130402.

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Iva Kosatka and Shumei He for their outstanding technical assistance and thank Dr Stephen Vanner, Dr David Reed, and Dr Alan Lomax for their helpful advice on this paper.

Funding

This study was funded by the Canadian Institute of Health Research (MOP 115021).

Author information

Authors and Affiliations

Authors

Contributions

MB supervised the project and obtained grant support. SP, YY, CZ, and MB designed the research. SP, YY, and CZ acquired and analyzed the data. YY, SP, CZ, and MB interpreted the data, drafted, and revised the paper.

Corresponding author

Correspondence to Michael J. Beyak.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

All experiments were performed under an approved protocol (2014-1496) in accordance with the guidelines from the Queen’s University Animal Care Committee and Canadian Council for Animal Care.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S.J., Yu, Y., Zides, C.G. et al. Mechanisms of reduced leptin-mediated satiety signaling during obesity. Int J Obes 46, 1212–1221 (2022). https://doi.org/10.1038/s41366-022-01079-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-022-01079-2

This article is cited by

Search

Quick links