Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular Biology

Targeting hypercoagulation to alleviate Alzheimer’s disease progression in metabolic syndrome

Abstract

Introduction

Metabolic Syndrome (MetS) constitutes an important risk factor for Alzheimer’s disease (AD); however, the mechanism linking these two disorders has not been completely elucidated. Hence, hypercoagulation may account for the missing hallmark connecting MetS and AD. The present review proposes how hemostatic imbalance triggered in MetS advances in the context of AD. MetS causes interruption of insulin signaling and inflammation, inciting insulin resistance in the brain. Subsequently, neuroinflammation and brain endothelial dysfunction are prompted that further intensify the exorbitant infiltration of circulating lipids and platelet aggregation, thereby causing hypercoagulable state, impairing fibrinolysis and eventually inducing prothrombic state in the brain leading to neurodegeneration.

Objective

This study aims to understand the role of hypercoagulation in triggering the progression of neurodegeneration in MetS. It also offers a few interventions to prevent the progression of AD in MetS targeting hypercoagulation.

Methods

Literature studies based on MetS related neurodegeneration, the impact of coagulation on aggravating obesity and AD via the mechanisms of BBB disruption, neuroinflammation, and hypofibrinolysis.

Conclusion

The present paper proposes the hypothesis that hypercoagulation might amplify MetS associated insulin resistance, neuroinflammation, BBB disruption, and amyloid beta accumulation which eventually leads to AD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Metabolic syndrome (MetS) triggered neurodegeneration via hypercoagulation.
Fig. 2: Schematic representation of pathogenesis of metabolic syndrome (MetS) linked Alzheimer’s disease (AD) via hypercoagulation.
Fig. 3

Similar content being viewed by others

References

  1. Zimmet P, Alberti G. The metabolic syndrome: progress towards one definition for an epidemic of our time. Nat Clin Pract Endocrinol Metab. 2008;4:239 https://doi.org/10.1038/ncpendmet0834.

    Article  PubMed  Google Scholar 

  2. Khan MAB, Hashim MJ, King JK, Govender RD, Mustafa H, Al Kaabi J. Epidemiology of Type 2 diabetes - global burden of disease and forecasted trends. J Epidemiol Glob Health. 2020;10:107–111. https://doi.org/10.2991/jegh.k.191028.001.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Congdon EE, Sigurdsson EM. Tau-targeting therapies for Alzheimer disease. Nat Rev Neurol. 2018;14:399–415. https://doi.org/10.1038/s41582-018-0013-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. GBD 2016 Neurology Collaborators Feigin VL, Nichols E, Alam T, Bannick MS, Beghi E, Blake N, et al. Global, regional, and national burden of neurological disorders, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18:459–80. https://doi.org/10.1016/S1474-4422(18)30499-X.

    Article  Google Scholar 

  5. Stephan BCM, Birdi R, Tang EYH, Cosco TD, Donini LM, Licher S, et al. Secular trends in dementia prevalence and incidence worldwide: a systematic review. J Alzheimers Dis. 2018;66:653–680.

    Article  Google Scholar 

  6. de A, Boleti AP, Almeida JA, Migliolo L. Impact of the metabolic syndrome on the evolution of neurodegenerative diseases. Neural Regen Res. 2021;16:688–9.

    Article  Google Scholar 

  7. Ng TP, Feng L, Nyunt MS, Feng L, Gao Q, Lim ML, et al. Metabolic syndrome and the risk of mild cognitive impairment and progression to dementia: follow-up of the Singapore longitudinal ageing study cohort. JAMA Neurol. 2016;73:456–463.

    Article  Google Scholar 

  8. Gomez G, Beason-Held LL, Bilgel M, An Y, Wong DF, Studenski S, et al. Metabolic syndrome and amyloid accumulation in the aging brain. J Alzheimers Dis. 2018;65:629–639.

    Article  CAS  Google Scholar 

  9. Zhang W, Xin L, Lu Y. Integrative analysis to identify common genetic markers of metabolic syndrome, dementia, and diabetes. Med Sci Monit. 2017;23:5885–91. https://doi.org/10.12659/msm.905521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pugazhenthi S. Metabolic syndrome and the cellular phadse of Alzheimer’s disease. Prog Mol Biol Transl Sci. 2017;146:243–58. https://doi.org/10.1016/bs.pmbts.2016.12.016.

    Article  CAS  PubMed  Google Scholar 

  11. Jayaraman A, Pike CJ. Alzheimer’s disease and Type 2 diabetes: multiple mechanisms contribute to interactions. Curr Diab Rep. 2014;14:476 https://doi.org/10.1007/s11892-014-0476-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Whitmer RA, Gunderson EP, Quesenberry CP, Zhou J, Yaffe K. Body mass index in midlife and risk of Alzheimer disease and vascular dementia. Curr Alzheimer Res. 2007;4:103–9.

    Article  CAS  Google Scholar 

  13. Hughes TF, Borenstein AR, Schofield E, Wu Y, Larson EB. Association between late-life body mass index and dementia: the Kame Project. Neurology. 2009;72:1741–6. https://doi.org/10.1212/WNL.0b013e3181a60a58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brands AMA, Biessels GJ, de Haan EHF, Kappelle LJ, Kessels RPC. The effects of Type 1 diabetes on cognitive performance: a meta-analysis. Diabetes Care. 2005;28:726–35. https://doi.org/10.2337/diacare.28.3.726.

    Article  PubMed  Google Scholar 

  15. Verdelho A, Madureira S, Ferro JM, Basile AM, Chabriat H, Erkinjuntti T, et al. LADIS Study. Differential impact of cerebral white matter changes, diabetes, hypertension and stroke on cognitive performance among non-disabled elderly. The LADIS study. J Neurol Neurosurg Psychiatry. 2007;78:1325–1330.

    Article  Google Scholar 

  16. Kim B, Backus C, Oh S, Hayes JM, Feldman EL. Increased Tau phosphorylation and cleavage in mouse models of Type 1 and Type 2 diabetes. Endocrinology. 2009;150:5294–301. https://doi.org/10.1210/en.2009-0695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gizem Y, Abdullah Y Metabolic Syndrome and Neurodegenerative Diseases. J Geriatr Med Gerontol 2018;4. https://doi.org/10.23937/2469-5858/1510042.

  18. Yalcin G, Yalcin A. Metabolic Syndrome and Neurodegenerative Diseases. J Geriatr Med Gerontol. 2018;4:042 https://doi.org/10.23937/2469-5858/1510042.

    Article  Google Scholar 

  19. Cortes-Canteli M, Paul J, Norris EH, Bronstein R, Ahn HJ, Zamolodchikov D, et al. Fibrinogen and β-amyloid association alters thrombosis and fibrinolysis: a possible contributing factor to Alzheimer’s disease. Neuron. 2010;66:695–709. https://doi.org/10.1016/j.neuron.2010.05.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Suidan GL, Singh PK, Patel-Hett S, Chen Z-L, Volfson D, Yamamoto-Imoto H, et al. Abnormal clotting of the intrinsic/contact pathway in Alzheimer disease patients is related to cognitive ability. Blood Adv. 2018;2:954–63. https://doi.org/10.1182/bloodadvances.2018017798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. van Dijk G, van Heijningen S, Reijne AC, Nyakas C, van der Zee EA, Eisel ULM. Integrative neurobiology of metabolic diseases, neuroinflammation, and neurodegeneration. Front Neurosci. 2015;9:173 https://doi.org/10.3389/fnins.2015.00173.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Luque-Contreras D, Carvajal K, Toral-Rios D, Franco-Bocanegra D, Campos-Peña V. Oxidative stress and metabolic syndrome: cause or consequence of Alzheimer’s disease? Oxid Med Cell Longev. 2014;2014:497802 https://doi.org/10.1155/2014/497802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nieuwdorp M, Stroes ES, Meijers JC, Büller H. Hypercoagulability in the metabolic syndrome. Curr Opin Pharmacol. 2005;5:155–9. https://doi.org/10.1016/j.coph.2004.10.003. AprPMID: 15780824.

    Article  CAS  PubMed  Google Scholar 

  24. Ford ES. The metabolic syndrome and C-reactive protein, fibrinogen, and leukocyte count: findings from the Third National Health and Nutrition Examination Survey. Atherosclerosis. 2003;168:351–358.

    Article  CAS  Google Scholar 

  25. Zamolodchikov D, Strickland S. Aβ delays fibrin clot lysis by altering fibrin structure and attenuating plasminogen binding to fibrin. Blood. 2012;119:3342–51. https://doi.org/10.1182/blood-2011-11-389668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Purandare N, Burns A. Cerebral emboli in the genesis of dementia. J Neurol Sci. 2009;283:17–20.

    Article  Google Scholar 

  27. Khan S, Khan S, Panda BP, Akhtar M, Najmi AK. Potential effects of vildagliptin on biomarkers associated with prothrombosis in diabetes mellitus. Expert Opin Ther Targets. 2015;19:1607–16. https://doi.org/10.1517/14728222.2016.1086338.

    Article  CAS  PubMed  Google Scholar 

  28. Yossef RR, Al-Yamany MF, Saad MA, El-Sahar AE. Neuroprotective effects of vildagliptin on drug induced Alzheimer’s disease in rats with metabolic syndrome: Role of hippocampal klotho and AKT signaling pathways. Eur J Pharmacol. 2020;889:173612 https://doi.org/10.1016/j.ejphar.2020.173612.

    Article  CAS  PubMed  Google Scholar 

  29. Husain I, Khan S, Khan S, Madaan T, Kumar S, Najmi AK. Unfolding the pleiotropic facades of rosuvastatin in therapeutic intervention of myriads of neurodegenerative disorders. Clin Exp Pharmacol Physiol. 2018;46:283–291.

    Article  Google Scholar 

  30. Biedermann JS, Kruip MJHA, van der Meer FJ, et al. Rosuvastatin use improves measures of coagulation in patients with venous thrombosis. Eur Heart J. 2018;39:1740–1747. https://doi.org/10.1093/eurheartj/ehy014.

    Article  CAS  PubMed  Google Scholar 

  31. Barthold D, Joyce G, Diaz Brinton R, Wharton W, Kehoe PG, Zissimopoulos J. Association of combination statin and antihypertensive therapy with reduced Alzheimer’s disease and related dementia risk. PLoS One. 2020;15:e0229541 https://doi.org/10.1371/journal.pone.0229541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Husain I, Akhtar M, Madaan T, Abdin MZ, Islamuddin M, Najmi AK. Rosuvastatin alleviates high-salt and cholesterol diet-induced cognitive impairment in rats via Nrf2–ARE pathway. Redox Rep. 2018;23:168–79. https://doi.org/10.1080/13510002.2018.1492774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yi X, Zhou Q, Wang C, Lin J, Chai Z. Aspirin plus clopidogrel may reduce the risk of early neurologic deterioration in ischemic stroke patients carrying CYP2C19*2 reduced-function alleles. J Neurol. 2018;265:2396–403. https://doi.org/10.1007/s00415-018-8998-.

    Article  CAS  PubMed  Google Scholar 

  34. Zhou M, Xu R, Kaelber DC, Gurney ME. Tumor Necrosis Factor (TNF) blocking agents are associated with lower risk for Alzheimer’s disease in patients with rheumatoid arthritis and psoriasis. PLoS ONE. 2020;15:e0229819 https://doi.org/10.1371/journal.pone.0229819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Decourt B, Lahiri DK, Sabbagh MN. Targeting Tumor Necrosis Factor Alpha for Alzheimer’s Disease. Curr Alzheimer Res. 2017;14:412–425. https://doi.org/10.2174/1567205013666160930110551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chaudhry R, Usama SM, Babiker HM. Physiology, Coagulation Pathways. [Updated 2020 Sep 3]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK482253/.

  37. Foley JH, Conway EM. Cross talk pathways between coagulation and inflammation. Circ Res. 2016;118:1392–408. https://doi.org/10.1161/CIRCRESAHA.116.306853.

    Article  CAS  PubMed  Google Scholar 

  38. Grover SP, Mackman N. Intrinsic pathway of coagulation and thrombosis. Arterioscler Thromb Vasc Biol. 2019;39:331–338.

    Article  CAS  Google Scholar 

  39. Kearney K, Tomlinson D, Smith K, Ajjan R. Hypofibrinolysis in diabetes: a therapeutic target for the reduction of cardiovascular risk. Cardiovasc Diabetol. 2017;16:34 https://doi.org/10.1186/s12933-017-0515-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Panova-Noeva M, Eggebrecht L, Prochaska JH, Wild PS. Potential of multidimensional, large-scale biodatabases to elucidate coagulation and platelet pathways as an approach towards precision medicine in thrombotic disease. Hamostaseologie. 2019;39:152–163.

    Article  Google Scholar 

  41. Habib A, Petrucci G, Rocca B. Pathophysiology of thrombosis in peripheral artery disease. Curr Vasc Pharmacol. 2020;18:204–214.

    Article  CAS  Google Scholar 

  42. Nogami K, Shima M. New therapies using nonfactor products for patients with hemophilia and inhibitors. Blood. 2019;133(Jan 31):399–406.

    Article  CAS  Google Scholar 

  43. Imperatore G, Riccardi G, Iovine C, Rivellese AA, Vaccaro O. Plasma fibrinogen: a new factor of the metabolic syndrome: a population-based study. Diabetes Care. 1998;21:649–54. https://doi.org/10.2337/diacare.21.4.649.

    Article  CAS  PubMed  Google Scholar 

  44. Russo I. The prothrombotic tendency in metabolic syndrome: focus on the potential mechanisms involved in impaired haemostasis and fibrinolytic balance. Scientifica (Cairo). 2012;2012:1–17. https://doi.org/10.6064/2012/525374.

    Article  Google Scholar 

  45. Bonora E, Kiechl S, Willeit J, Oberhollenzer F, Egger G, Bonadonna RC, et al. Metabolic syndrome: epidemiology and more extensive phenotypic description. Cross-sectional data from the Bruneck Study. Int J Obes Relat Metab Disord. 2003;27:1283–1289.

    Article  CAS  Google Scholar 

  46. Wannamethee SG, Lowe GD, Shaper AG, Rumley A, Lennon L, Whincup PH. The metabolic syndrome and insulin resistance: relationship to haemostatic and inflammatory markers in older non-diabetic men. Atherosclerosis. 2005;181:101–108.

    Article  CAS  Google Scholar 

  47. Schneider DJ. Abnormalities of coagulation, platelet function, and fibrinolysis associated with syndromes of insulin resistance. Coron Artery Dis. 2005;16:473–6. https://doi.org/10.1097/00019501-200512000-00003.

    Article  PubMed  Google Scholar 

  48. Alessi MC, Bastelica D, Mavri A, Morange P, Berthet B, Grino M, et al. Plasma PAI-1 levels are more strongly related to liver steatosis than to adipose tissue accumulation. Arterioscler Thromb Vasc Biol. 2003;23:1262–1268.

    Article  CAS  Google Scholar 

  49. Soares AL, Kazmi RS, Borges MA, Rosário PW, Fernandes AP, Sousa MO, et al. Elevated plasma factor VIII and von Willebrand factor in women with type 2 diabetes. Blood Coagul Fibrinolysis. 2011;22:600–5. https://doi.org/10.1097/MBC.0b013e32834b2fe1.

    Article  CAS  PubMed  Google Scholar 

  50. Stegenga ME, van der Crabben SN, Levi M, de Vos AF, Tanck MW, Sauerwein HP, et al. Hyperglycemia stimulates coagulation, whereas hyperinsulinemia impairs fibrinolysis in healthy humans. Diabetes. 2006;55(Jun):1807–12. https://doi.org/10.2337/db05-1543.

    Article  CAS  PubMed  Google Scholar 

  51. Meigs JB, Mittleman MA, Nathan DM, Tofler GH, Singer DE, Murphy-Sheehy PM, et al. Hyperinsulinemia, hyperglycemia, and impaired hemostasis: the Framingham offspring study. JAMA. 2000;283:221–228.

    Article  CAS  Google Scholar 

  52. Yudkin JS. Abnormalities of coagulation and fibrinolysis in insulin resistance. Diabetes Care. 1999;22:C25–C30.

    Google Scholar 

  53. Kim WM, Merskey C, Deming QB, Adel HN, Wolinsky H, Clarkson TB, et al. Hyperlipidemia, hypercoagulability, and accelerated thrombosis: studies in congenitally hyperlipidemic rats and in rats and monkeys with induced hyperlipidemia. Blood. 1976;47:275–286.

    Article  CAS  Google Scholar 

  54. Chen X, Zhao ZW, Li L, et al. Hypercoagulation and elevation of blood triglycerides are characteristics of Kawasaki disease. Lipids Health Dis. 2015;14:166 https://doi.org/10.1186/s12944-015-0167-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Doggen CJ, Lemaitre RN, Smith NL, Heckbert SR, Psaty BM. HMG CoA reductase inhibitors and the risk of venous thrombosis among postmenopausal women. J Thromb Haemost. 2004;2:700–1. https://doi.org/10.1111/j.1538-7836.2004.00696.x. May.

    Article  CAS  PubMed  Google Scholar 

  56. Lip GYH. Hypertension and the prothrombotic state. Journal of Human Hypertension. 2000;14:687–690.

    Article  CAS  Google Scholar 

  57. Catena C, Zingaro L, Casaccio D, Sechi LA. Abnormalities of coagulation in hypertensive patients with reduced creatinine clearance. Am J Med. 2000 Nov;109:556–61. https://doi.org/10.1016/s0002-9343(00)00567-2. PMID: 11063957.

    Article  CAS  PubMed  Google Scholar 

  58. Masoud M, Sarig G, Brenner B, Jacob G. Orthostatic hypercoagulability: a novel physiological mechanism to activate the coagulation system. Hypertension. 2008;51:1545–51. https://doi.org/10.1161/HYPERTENSIONAHA.108.112003.

    Article  CAS  PubMed  Google Scholar 

  59. Zamolodchikov D, Strickland S. A possible new role for Aβ in vascular and inflammatory dysfunction in Alzheimer’s disease. Thromb Res. 2016;141:S59–61. https://doi.org/10.1016/S0049-3848(16)30367-X.

    Article  CAS  PubMed  Google Scholar 

  60. Ahn HJ, Glickman JF, Poon KL, Zamolodchikov D, Jno-Charles OC, Norris EH, et al. A novel Aβ-fibrinogen interaction inhibitor rescues altered thrombosis and cognitive decline in Alzheimer’s disease mice. J Exp Med. 2014;211:1049–62. https://doi.org/10.1084/jem.20131751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zamolodchikov D, Renné T, Strickland S. The Alzheimer’s disease peptide β-amyloid promotes thrombin generation through activation of coagulation factor XII. J Thromb Haemost. 2016;14(May):995–1007. https://doi.org/10.1111/jth.13209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chen ZL, Revenko AS, Singh P, MacLeod AR, Norris EH, Strickland S. Depletion of coagulation factor XII ameliorates brain pathology and cognitive impairment in Alzheimer disease mice. Blood. 2017;129:2547–56. https://doi.org/10.1182/blood-2016-11-753202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Oh J, Lee HJ, Song JH, Park SI, Kim H. Plasminogen activator inhibitor-1 as an early potential diagnostic marker for Alzheimer’s disease. Exp Gerontol. 2014;60:87–91.

    Article  CAS  Google Scholar 

  64. Mari D, Parnetti L, Coppola R, Bottasso B, Reboldi G, Senin U, et al. Hemostasis abnormalities in patients with vascular dementia and Alzheimer’s disease. Thromb Haemost. 1996;76:216–8. https://doi.org/10.1055/s-0038-1650246.

    Article  Google Scholar 

  65. Iannucci J, Renehan W, Grammas P. Thrombin, a mediator of coagulation, inflammation, and neurotoxicity at the neurovascular interface: implications for alzheimer’s disease. Front Neurosci. 2020;14:762 https://doi.org/10.3389/fnins.2020.00762. Published 2020 Jul 24.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Sevush S, Jy W, Horstman LL, Mao WW, Kolodny L, Ahn YS. Platelet activation in Alzheimer disease. Arch Neurol. 1998;55:530–536.

    Article  CAS  Google Scholar 

  67. van Oijen M, Witteman JC, Hofman A, Koudstaal PJ, Breteler MM. Fibrinogen is associated with an increased risk of Alzheimer disease and vascular dementia. Stroke. 2005;36:2637–2641.

    Article  Google Scholar 

  68. Zhao WQ, Alkon DL. Role of insulin and insulin receptor in learning and memory. Mol Cell Endocrinol. 2001;177:125–34. https://doi.org/10.1016/s0303-7207(01)00455-5.

    Article  CAS  PubMed  Google Scholar 

  69. Kellar D, Craft S. Brain insulin resistance in Alzheimer’s disease and related disorders: mechanisms and therapeutic approaches. Diab Brain Health. 2019;9:758–766.

    Google Scholar 

  70. Watson GS, Craft S. The role of insulin resistance in the pathogenesis of Alzheimer’s disease: implications for treatment. CNS Drugs. 2003;17:27–45. https://doi.org/10.2165/00023210-200317010-00003. PMID: 12467491.

    Article  CAS  PubMed  Google Scholar 

  71. Nasoohi S, Parveen K, Ishrat T. Metabolic syndrome, brain insulin resistance, and alzheimer’s disease: thioredoxin interacting protein (TXNIP) and inflammasome as core amplifiers. J Alzheimer’s Dis. 2018;66:857–85. https://doi.org/10.3233/JAD-180735.

    Article  CAS  Google Scholar 

  72. Van Dyken P, Lacoste B. Impact of metabolic syndrome on neuroinflammation and the blood–brain barrier. Front Neurosci. 2018;12:930 https://doi.org/10.3389/fnins.2018.00930.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Chai J, Song Q. Quantitative and multiplexed study of endothelial cell inflammation. Cell Biochem Biophys. 2014;70:1783–90. https://doi.org/10.1007/s12013-014-0129-8.

    Article  CAS  PubMed  Google Scholar 

  74. Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG, et al. Genomic analysis of reactive astrogliosis. J Neurosci. 2012;32:6391–410. https://doi.org/10.1523/JNEUROSCI.6221-11.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Banks WA, Owen JB, Erickson MA. Insulin in the brain: there and back again. Pharmacol Ther. 2012;136:82–93. https://doi.org/10.1016/j.pharmthera.2012.07.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wieser V, Moschen AR, Tilg H. Inflammation, cytokines and insulin resistance: a clinical perspective. Arch Immunol Ther Exp. 2013;61:119–25.

    Article  CAS  Google Scholar 

  77. Duarte AI, Moreira PI, Oliveira CR. Insulin in central nervous system: more than just a peripheral hormone. J Aging Res. 2012;2012:384017.

    Article  Google Scholar 

  78. Rojas-Gutierrez E, Muñoz-Arenas G, Treviño S, Espinosa B, Chavez R, Rojas K, et al. Alzheimer’s disease and metabolic syndrome: A link from oxidative stress and inflammation to neurodegeneration. Synapse. 2017;71:e21990 https://doi.org/10.1002/syn.21990.

    Article  CAS  PubMed  Google Scholar 

  79. Merlini M, Akassoglou K. Alzheimer disease makes new blood contacts. Blood. 2017;129:2462–2463. https://doi.org/10.1182/blood-2017-03-772087. May 4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Davalos D, Kyu Ryu J, Merlini M, Baeten KM, Le Moan N, Petersen MA, et al. Fibrinogen-induced perivascular microglial clustering is required for the development of axonal damage in neuroinflammation. Nat Commun. 2012;3:1227 https://doi.org/10.1038/ncomms2230.

    Article  CAS  PubMed  Google Scholar 

  81. Woosuk SHur, Matthew JFlick. Aβ peptide and fibrinogen weave a web of destruction in cerebral amyloid angiopathy. PNAS. 2020;117:15391–15393. https://doi.org/10.1073/pnas.2009999117.

    Article  CAS  Google Scholar 

  82. Paul J, Strickland S, Melchor JP. Fibrin deposition accelerates neurovascular damage and neuroinflammation in mouse models of Alzheimer’s disease. J Exp Med. 2007;204:1999–2008. https://doi.org/10.1084/jem.20070304. 6Epub 2007 Jul 30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Garcia-Alloza M, Gregory J, Kuchibhotla KV, Fine S, Wei Y, Ayata C, et al. Cerebrovascular lesions induce transient -amyloid deposition. Brain. 2011;134:3697–707. https://doi.org/10.1093/brain/awr300.

    Article  PubMed  Google Scholar 

  84. Cortes-Canteli M, Mattei L, Richards AT, Norris EH, Strickland S. Fibrin deposited in the Alzheimer’s disease brain promotes neuronal degeneration. Neurobiol Aging. 2015;36:608–17. https://doi.org/10.1016/j.neurobiolaging.2014.10.030.

    Article  CAS  PubMed  Google Scholar 

  85. Klohs J, Baltes C, Princz-Kranz F, Ratering D, Nitsch RM, Knuesel I, et al. Contrast-enhanced magnetic resonance microangiography reveals remodeling of the cerebral microvasculature in transgenic ArcA mice. J Neurosci. 2012;32:1705–13. https://doi.org/10.1523/JNEUROSCI.5626-11.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lam CK, Yoo T, Hiner B, Liu Z, Grutzendler J. Embolus extravasation is an alternative mechanism for cerebral microvascular recanalization. Nature. 2010;465:478–82. https://doi.org/10.1038/nature09001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Oh SB, Byun CJ, Yun J-H, Jo D-G, Carmeliet P, Koh J-Y, et al. Tissue plasminogen activator arrests Alzheimer’s disease pathogenesis. Neurobiol Aging. 2014;35:511–9. https://doi.org/10.1016/j.neurobiolaging.2013.09.020.

    Article  CAS  PubMed  Google Scholar 

  88. Hultman K, Strickland S, Norris EH. The APOE ε4/ε4 genotype potentiates vascular fibrin(ogen) deposition in amyloid-laden vessels in the brains of Alzheimer’s disease patients. J Cereb Blood Flow Metab. 2013;33:1251–8. https://doi.org/10.1038/jcbfm.2013.76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lloret A, Monllor P, Esteve D, Cervera-Ferri A, Lloret M-A. Obesity as a risk factor for Alzheimer’s disease: implication of leptin and glutamate. Front. Neurosci. 2019;13:508 https://doi.org/10.3389/fnins.2019.00508.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Ali A, Ali A, Ahmad W, Ahmad N, Khan S, Nuruddin SM, et al. Deciphering the Role of WNT Signaling in Metabolic Syndrome-Linked Alzheimer’s Disease. Mol Neurobiol 2019. https://doi.org/10.1007/s12035-019-01700-y.

  91. Balakrishnan K, Verdile G, Mehta PD, Beilby J, Nolan D, Galvão DA, et al. Plasma Abeta42 correlates positively with increased body fat in healthy individuals. J Alzheimers Dis. 2005;8:269–82.

    Article  CAS  Google Scholar 

  92. Petot GJ, Traore F, Debanne SM, Lerner AJ, Smyth KA, Friedland RP. Interactions of apolipoprotein E genotype and dietary fat intake of healthy older persons during mid-adult life. Metabolism. 2003;52:279–81. https://doi.org/10.1053/meta.2003.50066.

    Article  CAS  PubMed  Google Scholar 

  93. Kothari V, Luo Y, Tornabene T, O’Neill AM, Greene MW, Geetha T, et al. High fat diet induces brain insulin resistance and cognitive impairment in mice. Biochim Biophys Acta - Mol Basis Dis. 2017;1863:499–508. https://doi.org/10.1016/j.bbadis.2016.10.006.

    Article  CAS  PubMed  Google Scholar 

  94. Pasquier F, Boulogne A, Leys D, Fontaine P. Diabetes mellitus and dementia. Diabetes Metab. 2006;32:403–414.

    Article  CAS  Google Scholar 

  95. Leibson C, Rocca W, Hanson V, Cha R, Kokmen E, O’Brien PC, et al. The risk of dementia among persons with diabetes mellitus: a population-based cohort study. Ann N Y Acad Sci. 1997;826:422–7.

    Article  CAS  Google Scholar 

  96. Ott A, Stolk RP, van Harskamp F, et al. Diabetes mellitus and the risk of dementia: the Rotterdam study. Neurology. 1999;10:1937–42.

    Article  Google Scholar 

  97. Khan T, Khan S, Akhtar M, Ali J, Najmi AK. Empagliflozin nanoparticles attenuates type2 diabetes induced cognitive impairment via oxidative stress and inflammatory pathway in high fructose diet induced hyperglycemic mice. Neurochem Int. 2021;150:105158 https://doi.org/10.1016/j.neuint.2021.105158.

    Article  CAS  PubMed  Google Scholar 

  98. de la Monte SM, Wands JR. Alzheimer’s disease is type 3 diabetes-evidence reviewed. J Diabetes Sci Technol. 2008;2:1101–13. https://doi.org/10.1177/193229680800200619. NovPMID: 19885299; PMCID: PMC2769828.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Razay G, Wilcock GK. Hyperinsulinemia and Alzheimer’s disease. Age Ageing. 1994;23:396–9.

    Article  CAS  Google Scholar 

  100. Craft S, Murphy C, Wemstrom J. Glucose effects on complex memory and non-memory tasks: the influence of age, sex, and glucoregulatory response. Psychobiology. 1994;22:95–105.

    Article  CAS  Google Scholar 

  101. Donner L, Fälker K, Gremer L, Klinker S, Pagani G, Ljungberg LU, et al. Platelets contribute to amyloid-β aggregation in cerebral vessels through integrin α IIb β 3 –induced outside-in signaling and clusterin release. Sci Signal. 2016;9:ra52–ra52. https://doi.org/10.1126/scisignal.aaf6240.

    Article  CAS  PubMed  Google Scholar 

  102. Holcomb L, Gordon MN, McGowan E, Yu X, Benkovic S, Jantzen P, et al. Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nat Med. 1998;4:97–100.

    Article  CAS  Google Scholar 

  103. Shi JQ, Shen W, Chen J, Wang BR, Zhong LL, Zhu YW, et al. Anti-TNF-alpha reduces amyloid plaques and tau phosphorylation and induces CD11c-positive dendritic-like cell in the APP/PS1 transgenic mouse brains. Brain Res. 2011;1368:239–247.

    Article  CAS  Google Scholar 

  104. Detrait ER, Danis B, Lamberty Y, Foerch P. Peripheral administration of an anti-TNF-alpha receptor fusion protein counteracts the amyloid induced elevation of hippocampal TNF-alpha levels and memory deficits in mice. Neurochemi Intern. 2014;72:10–13.

    Article  CAS  Google Scholar 

Download references

Funding

Promotion of University Research and Scientific Excellence (PURSE), Department of Science & Technology (DST), Government of India, Ministry of Science & Technology, India and Indian Council of Medical Research (ICMR), Government of India, India

Author information

Authors and Affiliations

Authors

Contributions

SK, AKN, SP, SS, MA contributed in the conceptualization of the manuscript. SK, PK, SK, SS contributed in the writing of the manuscript.

Corresponding author

Correspondence to Abul Kalam Najmi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, S., Pati, S., Singh, S. et al. Targeting hypercoagulation to alleviate Alzheimer’s disease progression in metabolic syndrome. Int J Obes 46, 245–254 (2022). https://doi.org/10.1038/s41366-021-00977-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-021-00977-1

Search

Quick links