Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pediatrics

Association of increased abdominal adiposity at birth with altered ventral caudate microstructure

Abstract

Background

Neonatal adiposity is associated with a higher risk of obesity and cardiometabolic risk factors in later life. It is however unknown if central food intake regulating networks in the ventral striatum are altered with in-utero abdominal growth, indexed by neonatal adiposity in our current study. We aim to examine the relationship between striatal microstructure and abdominal adipose tissue compartments (AATCs) in Asian neonates from the Growing Up in Singapore Toward healthy Outcomes mother-offspring cohort.

Study design

About 109 neonates were included in this study. Magnetic resonance imaging (MRI) was performed for the brain and abdominal regions between 5 to 17 days of life. Diffusion-weighted imaging of the brain was performed for the derivation of caudate and putamen fractional anisotropy (FA). Abdominal imaging was performed to quantify AATCs namely superficial subcutaneous adipose tissue (sSAT), deep subcutaneous adipose tissue (dSAT), and internal adipose tissue (IAT). Absolute and percentage adipose tissue of total abdominal volume (TAV) were calculated.

Results

We showed that AATCs at birth were significantly associated with increased FA in bilateral ventral caudate heads which are part of the ventral striatum (sSAT: βleft = 0.56, p < 0.001; βright = 0.65, p < 0.001, dSAT: βleft = 0.43, p < 0.001; βright = 0.52, p < 0.001, IAT: βleft = 0.30, p = 0.005; βright = 0.32, p = 0.002) in neonates with low birth weights adjusted for gestational age.

Conclusions

Our study provides preliminary evidence of a potential relationship between neonatal adiposity and in-utero programming of the ventral striatum, a brain structure that governs feeding behavior.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: T1-weighted water-suppressed abdominal MRI scans of neonates.

Similar content being viewed by others

References

  1. Godfrey KM, Gluckman PD, Hanson MA. Developmental origins of metabolic disease: life course and intergenerational perspectives. Trends Endocrin Metab. 2010;21:199–205.

    Article  CAS  Google Scholar 

  2. Symonds ME, Mendez MA, Meltzer HM, Koletzko B, Godfrey K, Forsyth S, et al. Early life nutritional programming of obesity: mother-child cohort studies. Ann Nutr Metab. 2013;62:137–45.

    Article  CAS  PubMed  Google Scholar 

  3. Gluckman PD, Hanson MA. Living with the past: evolution, development, and patterns of disease. Science. 2004;305:1733–6.

    Article  CAS  PubMed  Google Scholar 

  4. Murtaugh MA, Jacobs DR, Moran A, Steinberger J, Sinaiko AR. Relation of birth weight to fasting insulin, insulin resistance, and body size in adolescence. Diabetes Care. 2003;26:187–92.

    Article  PubMed  Google Scholar 

  5. Harder T, Rodekamp E, Schellong K, Dudenhausen JW, Plagemann A. Birth weight and subsequent risk of type 2 diabetes: a meta-analysis. Am J Epidemiol. 2007;165:849–57.

    Article  PubMed  Google Scholar 

  6. Ravelli G-P, Stein ZA, Susser MW. Obesity in young men after famine exposure in utero and early infancy. N Engl J Med. 1976;295:349–53.

    Article  CAS  PubMed  Google Scholar 

  7. Rich-Edwards JW, Kleinman K, Michels KB, Stampfer MJ, Manson JAE, Rexrode KM, et al. Longitudinal study of birth weight and adult body mass index in predicting risk of coronary heart disease and stroke in women. BMJ. 2005;330:1115–8.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Moore BF, Harrall KK, Sauder KA, Glueck DH, Dabelea D. Neonatal adiposity and childhood obesity. Pediatrics. 2020;146:e20200737.

    Article  PubMed  Google Scholar 

  9. Yu JH, Kim MS. Molecular mechanisms of appetite regulation. Diabetes Metab J. 2012;36:391–8.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Guyenet SJ, Schwartz MW. Regulation of food intake, energy balance, and body fat mass: Implications for the pathogenesis and treatment of obesity. J Clin Endocrinol Metab. 2012;97:745–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Woods SC, Seeley RJ, Porte D, Schwartz MW. Signals that regulate food intake and energy homeostasis. Science. 1998;280:1378–83.

    Article  CAS  PubMed  Google Scholar 

  12. Mühlhäusler BS, Adam CL, McMillen IC. Maternal nutrition and the programming of obesity. Organogenesis. 2008;4:144–52.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Desai M, Han G, Ross MG. Programmed hyperphagia in offspring of obese dams: Altered expression of hypothalamic nutrient sensors, neurogenic factors and epigenetic modulators. Appetite. 2016;99:193–9.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Dias-Rocha CP, Almeida MM, Santana EM, Costa JCB, Franco JG, Pazos-Moura CC, et al. Maternal high-fat diet induces sex-specific endocannabinoid system changes in newborn rats and programs adiposity, energy expenditure and food preference in adulthood. J. Nutr Biochem. 2018;51:56–68.

    Article  CAS  PubMed  Google Scholar 

  15. Berridge KC, Ho CY, Richard JM, Difeliceantonio AG. The tempted brain eats: pleasure and desire circuits in obesity and eating disorders. Brain Res. 2010;1350:43–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kelley AE. Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning. Neurosci Biobehav Rev. 2004;27:765–76.

    Article  PubMed  Google Scholar 

  17. Schloegl H, Percik R, Horstmann A, Villringer A, Stumvoll M. Peptide hormones regulating appetite-focus on neuroimaging studies in humans. Diabetes Metab Res Rev. 2011;27:104–12.

    Article  CAS  PubMed  Google Scholar 

  18. Heekeren HR, Wartenburger I, Marschner A, Mell T, Villringer A, Reischies FM. Role of ventral striatum in reward-based decision making. Neuroreport. 2007;18:951–5.

    Article  PubMed  Google Scholar 

  19. Willuhn I, Burgeno LM, Everitt BJ, Phillips PEM. Hierarchical recruitment of phasic dopamine signaling in the striatum during the progression of cocaine use. Proc Natl Acad Sci USA. 2012;109:20703–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Norgren R, Hajnal A, Mungarndee SS. Gustatory reward and the nucleus accumbens. Physiol Behav. 2006;89:531–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kaskan PM, Dean AM, Nicholas MA, Mitz AR, Murray EA. Gustatory responses in macaque monkeys revealed with fMRI: comments on taste, taste preference, and internal state. Neuroimage. 2019;184:932–42.

    Article  PubMed  Google Scholar 

  22. Mineo D, Cacace F, Mancini M, Vannelli A, Campanelli F, Natale G, et al. Dopamine drives binge‐like consumption of a palatable food in experimental Parkinsonism. Mov Disord. 2019;34:821–31.

    Article  CAS  PubMed  Google Scholar 

  23. Spierling S, de Guglielmo G, Kirson D, Kreisler A, Roberto M, George O, et al. Insula to ventral striatal projections mediate compulsive eating produced by intermittent access to palatable food. Neuropsychopharmacology. 2020;45:579–88.

    Article  PubMed  Google Scholar 

  24. Caravaggio F, Borlido C, Hahn M, Feng Z, Fervaha G, Gerretsen P, et al. Reduced insulin sensitivity is related to less endogenous dopamine at D2/3 receptors in the ventral striatum of healthy nonobese humans. Int J Neuropsychopharmacol. 2015;18:1–10.

    Article  CAS  Google Scholar 

  25. Sadaf Farooqi I, Bullmore E, Keogh J, Gillard J, O’Rahilly S, Fletcher PC. Leptin regulates striatal regions and human eating behavior. Science. 2007;317:1355.

    Article  PubMed  CAS  Google Scholar 

  26. Havrankova J, Schmechel D, Roth J, Brownstein M. Identification of insulin in rat brain. Proc Natl Acad Sci USA. 1978;75:5737–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schulingkamp RJ, Pagano TC, Hung D, Raffa RB. Insulin receptors and insulin action in the brain: Review and clinical implications. Neurosci Biobehav Rev. 2000;24:855–72.

    Article  CAS  PubMed  Google Scholar 

  28. Sharmili ET, Iglesias S, Kuzmanovic B, Rigoux L, Stephan KE, Brüning JC, et al. Modulation of midbrain neurocircuitry by intranasal insulin. Neuroimage. 2019;194:120–7.

    Article  CAS  Google Scholar 

  29. Heni M, Kullmann S, Ahlqvist E, Wagner R, Machicao F, Staiger H, et al. Interaction between the obesity-risk gene FTO and the dopamine D2 receptor gene ANKK1/TaqIA on insulin sensitivity. Diabetologia. 2016;59:2622–31.

    Article  CAS  PubMed  Google Scholar 

  30. Kullmann S, Frank S, Heni M, Ketterer C, Veit R, Häring H-U, et al. Intranasal insulin modulates intrinsic reward and prefrontal circuitry of the human brain in lean women. Neuroendocrinology. 2013;97:176–82.

    Article  CAS  PubMed  Google Scholar 

  31. Tiedemann LJ, Schmid SM, Hettel J, Giesen K, Francke P, Büchel C, et al. Central insulin modulates food valuation via mesolimbic pathways. Nat Commun. 2017; 8. https://doi.org/10.1038/ncomms16052.

  32. Guthoff M, Grichisch Y, Canova C, Tschritter O, Veit R, Hallschmid M, et al. Insulin modulates food-related activity in the central nervous system. J Clin Endocrinol Metab. 2010;95:748–55.

    Article  CAS  PubMed  Google Scholar 

  33. Kelley DE, Thaete FL, Troost F, Huwe T, Goodpaster BH. Subdivisions of subcutaneous abdominal adipose tissue and insulin resistance. Am J Physiol Endocrinol Metab. 2000;278. https://doi.org/10.1152/ajpendo.2000.278.5.e941.

  34. Smith SR, Lovejoy JC, Greenway F, Ryan D, de Jonge L, de La Bretonne J, et al. Contributions of total body fat, abdominal subcutaneous adipose tissue compartments, and visceral adipose tissue to the metabolic complications of obesity. Metabolism. 2001;50:425–35.

    Article  CAS  PubMed  Google Scholar 

  35. Miyazaki Y, Glass L, Triplitt C, Wajcberg E, Mandarino LJ, DeFronzo RA. Abdominal fat distribution and peripheral and hepatic insulin resistance in type 2 diabetes mellitus. Am J Physiol Endocrinol Metab. 2002;283. https://doi.org/10.1152/ajpendo.0327.2001.

  36. Tint MT, Fortier MV, Godfrey KM, Shuter B, Kapur J, Rajadurai VS, et al. Abdominal adipose tissue compartments vary with ethnicity in Asian neonates: Growing Up in Singapore Toward Healthy Outcomes birth cohort study. Am J Clin Nutr. 2016;103:1311–7.

    Article  CAS  PubMed  Google Scholar 

  37. Yajnik CS, Fall CHD, Coyaji KJ, Hirve SS, Rao S, Barker DJP, et al. Neonatal anthropometry: the thin-fat Indian baby. The Pune maternal nutrition study. Int J Obes Relat Metab Disord. 2003;27:173–80.

    Article  CAS  PubMed  Google Scholar 

  38. Soh S-E, Tint MT, Gluckman PD, Godfrey KM, Rifkin-Graboi A, Chan YH, et al. Cohort profile: Growing Up in Singapore Towards healthy Outcomes (GUSTO) birth cohort study. Int J Epidemiol. 2014;43:1401–9.

    Article  PubMed  Google Scholar 

  39. Modi N, Thomas EL, Uthaya SN, Umranikar S, Bell JD, Yajnik C. Whole body magnetic resonance imaging of healthy newborn infants demonstrates increased central adiposity in Asian Indians. Pediatric Res. 2009;65:584–7.

    Article  Google Scholar 

  40. Harrington TAM, Thomas EL, Modi N, Frost G, Coutts GA, Bell JD. Fast and reproducible method for the direct quantitation of adipose tissue in newborn infants. Lipids. 2002;37:95–100.

    Article  CAS  PubMed  Google Scholar 

  41. WHO Expert Committee on Diabetes Mellitus & World Health. WHO Expert Committee on Diabetes Mellitus. Geneva: second report. World Health Organization technical report series; 1980. Report No.:646.

  42. Vallortigara G, Rogers LJ, Bisazza A. Possible evolutionary origins of cognitive brain lateralization. Brain Res Rev. 1999;30:164–75.

    Article  CAS  PubMed  Google Scholar 

  43. Fox KCR, Yih J, Raccah O, Pendekanti SL, Limbach LE, Maydan DD, et al. Changes in subjective experience elicited by direct stimulation of the human orbitofrontal cortex. Neurology. 2018;91:E1519–27.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sacré P, Kerr MSD, Subramanian S, Fitzgerald Z, Kahn K, Johnson MA, et al. Risk-taking bias in human decision-making is encoded via a right–left brain push–pull system. Proc Natl Acad Sci USA. 2019;116:1404–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Zhang P, Liu Y, Lv H, Li M, Yu F, Wang Z, et al. Integration of neural reward processing and appetite-related signaling in obese females: evidence from resting-state fMRI. J Magn Reson Imaging. 2019;50:541–51.

    Article  PubMed  Google Scholar 

  46. Marqués-Iturria I, Scholtens LH, Garolera M, Pueyo R, García-García I, González-Tartiere P, et al. Affected connectivity organization of the reward system structure in obesity. Neuroimage. 2015;111:100–6.

    Article  PubMed  Google Scholar 

  47. Tomasi D, Volkow ND. Striatocortical pathway dysfunction in addiction and obesity: differences and similarities. Crit Rev Biochem Mol Biol. 2013;48:1–19.

    Article  CAS  PubMed  Google Scholar 

  48. Contreras-Rodríguez O, Martín-Pérez C, Vilar-López R, Verdejo-Garcia A. Ventral and dorsal striatum networks in obesity: link to food craving and weight gain. Biol Psychiatry. 2017;81:789–96.

    Article  PubMed  Google Scholar 

  49. Cortese S. The association between ADHD and obesity: Intriguing, progressively more investigated, but still puzzling. Brain Sci. 2019;9. https://doi.org/10.3390/brainsci9100256.

  50. O’Hara VM, Curran JL, Browne NT. The co-occurrence of pediatric obesity and ADHD: an understanding of shared pathophysiology and implications for collaborative management. Current Obes Rep. 2020;9:451–61.

    Article  Google Scholar 

  51. Rivera HM, Christiansen KJ, Sullivan EL. The role of maternal obesity in the risk of neuropsychiatric disorders. Front Neurosci. 2015;9:194.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Indredavik MS, Vik T, Heyerdahl S, Kulseng S, Fayers P, Brubakk AM. Psychiatric symptoms and disorders in adolescents with low birth weight. Arch Dis Child Fetal Neonatal Ed. 2004;89:F445–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lahti J, Räikkönen K, Kajantie E, Heinonen K, Pesonen AK, Järvenpää AL, et al. Small body size at birth and behavioural symptoms of ADHD in children aged five to six years. J Child Psychol Psychiatry. 2006;47:1167–74.

    Article  CAS  PubMed  Google Scholar 

  54. Loret De Mola C, de França GVA, de Avila Quevedo L, Horta BL. Low birth weight, preterm birth and small for gestational age association with adult depression: systematic review and meta-analysis. Br J Psychiatry. 2014;205:340–7.

    Article  PubMed  Google Scholar 

  55. Murray E, Pearson R, Fernandes M, Santos IS, Barros FC, Victora CG, et al. Are fetal growth impairment and preterm birth causally related to child attention problems and ADHD? Evidence from a comparison between high-income and middle-income cohorts. J Epidemiol Community Health. 2016;70:704–9.

    Article  PubMed  Google Scholar 

  56. Silveira PP, Agranonik M, Faras H, Portella AK, Meaney MJ, Levitan RD. Preliminary evidence for an impulsivity-based thrifty eating phenotype. Pediatric Res. 2012;71:293–8.

    Article  Google Scholar 

  57. Silveira PP, Pokhvisneva I, Gaudreau H, Rifkin-Graboi A, Broekman BFP, Steiner M, et al. Birth weight and catch up growth are associated with childhood impulsivity in two independent cohorts. Sci Rep. 2018;8. https://doi.org/10.1038/s41598-018-31816-5.

  58. Reis RS, Dalle Molle R, Machado TD, Mucellini AB, Rodrigues DM, Bortoluzzi A, et al. Impulsivity-based thrifty eating phenotype and the protective role of n-3 PUFAs intake in adolescents. Transl Psychiatry. 2016;6:755.

    Article  CAS  Google Scholar 

  59. Mebel DM, Wong JCY, Dong YJ, Borgland SL. Insulin in the ventral tegmental area reduces hedonic feeding and suppresses dopamine concentration via increased reuptake. Eur J Neurosci. 2012;36:2336–46.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Stouffer MA, Woods CA, Patel JC, Lee CR, Witkovsky P, Bao L, et al. Insulin enhances striatal dopamine release by activating cholinergic interneurons and thereby signals reward. Nat Commun. 2015;6:1–12.

    Article  CAS  Google Scholar 

  61. Hari Dass SA, McCracken K, Pokhvisneva I, Chen LM, Garg E, Nguyen TTT, et al. A biologically-informed polygenic score identifies endophenotypes and clinical conditions associated with the insulin receptor function on specific brain regions. EBioMedicine. 2019;42:188–202.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Alves MB, Laureano DP, Dalle Molle R, Machado TD, Salvador APdeA, Miguel PM, et al. Intrauterine growth restriction increases impulsive behavior and is associated with altered dopamine transmission in both medial prefrontal and orbitofrontal cortex in female rats. Physiol Behav. 2019;204:336–46.

    Article  CAS  PubMed  Google Scholar 

  63. Laureano DP, Alves MB, Miguel PM, Machado TD, Reis AR, Mucellini AB, et al. Intrauterine growth restriction modifies the accumbal dopaminergic response to palatable food intake. Neuroscience. 2019;400:184–95.

    Article  CAS  PubMed  Google Scholar 

  64. Fulton S, Pissios P, Manchon RP, Stiles L, Frank L, Pothos EN, et al. Leptin regulation of the mesoaccumbens dopamine pathway. Neuron. 2006;51:811–22.

    Article  CAS  PubMed  Google Scholar 

  65. Josefson JL, Zeiss DM, Rademaker AW, Metzger BE. Maternal leptin predicts adiposity of the neonate. Horm Res Paediatr. 2014;81:13–19.

    Article  CAS  PubMed  Google Scholar 

  66. Luo Z-C, Nuyt A-M, Delvin E, Fraser WD, Julien P, Audibert F, et al. Maternal and fetal leptin, adiponectin levels and associations with fetal insulin sensitivity. Obesity. 2013;21:210–6.

    Article  CAS  PubMed  Google Scholar 

  67. Thompson JR, Gustafsson HC, DeCapo M, Takahashi DL, Bagley JL, Dean TA, et al. Maternal diet, metabolic state, and inflammatory response exert unique and long-lasting influences on offspring behavior in non-human primates. Front Endocrinol. 2018;9:23.

    Article  Google Scholar 

  68. Krakowiak P, Walker CK, Bremer AA, Baker AS, Ozonoff S, Hansen RL, et al. Maternal metabolic conditions and risk for autism and other neurodevelopmental disorders. Pediatrics. 2012;129:e1121–28.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Mehta SH, Kerver JM, Sokol RJ, Keating DP, Paneth N. The association between maternal obesity and neurodevelopmental outcomes of offspring. J Pediatrics. 2014;165:891–6.

    Article  Google Scholar 

  70. Torres-Espinola FJ, Berglund SK, García-Valdés LM, Segura MT, Jerez A, Campos D, et al. Maternal obesity, overweight and gestational diabetes affect the offspring neurodevelopment at 6 and 18 months of age – A follow up from the PREOBE Cohort. PLoS ONE. 2015;10:e0133010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This study was approved by both the National Healthcare Group Domain Specific Review Board (reference number: D/09/021) (https://www.research.nhg.com.sg/wps/wcm/connect/romp/nhgromp/home) and Sing Health Centralized Institutional Review Board (reference number: 2009/280/D) (https://research.singhealth.com.sg/pages/centralisedinstitutionalreviewboard.aspx).

Funding

Supported by the Singapore National Research Foundation under its Translational and Clinical Research (TCR) Flagship Program and administered by the Singapore Ministry of Health’s National Medical Research Council (NMRC), Singapore- NMRC/TCR/004-NUS/2008; NMRC/TCR/012-NUHS/2014. Additional funding is provided by the NMRC (NMRC/CBRG/0039/2013), Singapore Ministry of Education Academic Research Fund Tier 2 (MOE2012-T2-2-130), and Strategic Positioning Fund by Agency for Science, Technology and Research (A*STAR), Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai Peng Tan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koh, D.X.P., Tint, M.T., Gluckman, P.D. et al. Association of increased abdominal adiposity at birth with altered ventral caudate microstructure. Int J Obes 45, 2396–2403 (2021). https://doi.org/10.1038/s41366-021-00905-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-021-00905-3

Search

Quick links