Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pediatrics

Associations between obesity-related gene expression in maternal and cord blood and newborn adiposity: findings from the Araraquara Cohort study

Abstract

Background/objectives

Genes involved in the regulation of metabolism, adipose tissue deposition, inflammation, and the appetite-satiety axis may play an important role in fetal development, and possibly induce permanent metabolic changes and fat accumulation. In this study we investigated: (1) obesity-related gene expression in maternal and cord blood of overweight/obese and normal-weight pregnant women; (2) associations between obesity-related gene expression in maternal and cord blood; and (3) associations of gene expression in each of maternal and cord blood with newborn adiposity.

Subjects/methods

Twenty-five overweight/obese and 32 normal-weight pregnant women were selected from the Araraquara Cohort Study according to their pre-pregnancy BMI. Maternal and cord blood gene expression of LEPR, STAT3, PPARG, TLR4, IL-6, IL-10, FTO, MC4R, TNF-α, and NFκB were investigated by relative real-time PCR quantification. The body composition of the newborns was assessed by air displacement plethysmography. Associations between maternal and cord blood gene expression and markers of newborn adiposity (weight, BMI, and fat mass%) were explored by linear regression models controlling for maternal age, pre-pregnancy BMI, maternal gestational weight gain, gestational age, and newborn sex.

Results

There was higher TLR4, NFκB, and TNF-a expression, and lower IL-6 expression, in overweight/obese pregnant women and their respective newborns compared with normal-weight women and their newborns (p < 0.001). Maternal PPARG gene expression was associated with both weight and fat mass % of the newborns, and cord blood IL-10 expression was associated with BMI and fat mass %, controlling for confounders.

Conclusion

To our knowledge, this is the first study to evaluate the relationship of maternal and cord blood gene expression with adiposity markers of the newborn. Our results provide evidence for the contribution of maternal and cord blood gene expression—particularly maternal PPARG and TLR4 expression, and cord blood IL-10 expression—to newborn weight, BMI, and fat mass %.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Gene expression data.

Similar content being viewed by others

References

  1. Catalano PM, Shankar K. Obesity and pregnancy: mechanisms of short term and long term adverse consequences for mother and child. BMJ. 2017;356:j1.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Boney CM, Verma A, Tucker R, Vohr BR. Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics. 2005;115:e290–6.

    Article  PubMed  Google Scholar 

  3. Catalano PM, Ehrenberg HM. The short- and long-term implications of maternal obesity on the mother and her offspring. BJOG. 2006;113:1126–33.

    Article  CAS  PubMed  Google Scholar 

  4. Armitage J, Poston L, Taylor P. Developmental origins of obesity and the metabolic syndrome: the role of maternal obesity. Front Horm Res. 2008;36:73–84.

    Article  PubMed  Google Scholar 

  5. De Vries A, Reynolds RM, Seckl JR, Van Der Wal M, Bonsel GJ, Vrijkotte TGM. Increased maternal BMI is associated with infant wheezing in early life: a prospective cohort study. J Dev Orig Health Dis. 2014;5:351–60.

    Article  PubMed  CAS  Google Scholar 

  6. Sewell MF, Huston-Presley L, Super DM, Catalano P. Increased neonatal fat mass, not lean body mass, is associated with maternal obesity. Am J Obstet Gynecol. 2006;195:1100–3.

    Article  PubMed  Google Scholar 

  7. Hull HR, Dinger MK, Knehans AW, Thompson DM, Fields DA. Impact of maternal body mass index on neonate birthweight and body composition. Am J Obstet Gynecol. 2008;198:416.e1–416.e6.

    Article  Google Scholar 

  8. Brenseke B, Prater MR, Bahamonde J, Gutierrez JC. Current thoughts on maternal nutrition and fetal programming of the metabolic syndrome. J Pregnancy. 2013;3:368461.

    Google Scholar 

  9. Plows JF, Stanley JL, Baker PN, Reynolds CM, Vickers MH. The pathophysiology of gestational diabetes mellitus. Int J Mol Sci. 2018;19:3342.

    Article  PubMed Central  CAS  Google Scholar 

  10. Qiao L, Yoo HS, Madon A, Kinney B, Hay WW, Shao J. Adiponectin enhances mouse fetal fat deposition. Diabetes. 2012;61:3199–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Castro NP, Euclydes VV, Simões FA, Vaz-de-lima LRA, De Brito CA, Luzia LA, et al. The relationship between maternal plasma leptin and adiponectin concentrations and newborn adiposity. Nutrients. 2017;9:182.

    Article  PubMed Central  CAS  Google Scholar 

  12. Bashiri A, Heo HJ, Ben-Avraham D, Mazor M, Budagov T, Einstein FH, et al. Pregnancy complicated by obesity induces global transcript expression alterations in visceral and subcutaneous fat. Mol Genet Genom. 2014;289:695–705.

    Article  CAS  Google Scholar 

  13. Neri C, Edlow AG. Effects of maternal obesity on fetal programming: molecular approaches. Cold Spring Harb Perspect Med. 2016;6.

  14. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162:156–9.

    Article  CAS  PubMed  Google Scholar 

  15. Giulietti A, Overbergh L, Valckx D, Decallonne B, Bouillon R, Mathieu C. An overview of real-time quantitative PCR: applications to quantify cytokine gene expression. Methods. 2001;25:386–401.

    Article  CAS  PubMed  Google Scholar 

  16. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55:611–22.

    Article  CAS  PubMed  Google Scholar 

  17. Regnault N, Botton J, Forhan A, Hankard R, Thiebaugeorges O, Hillier TA, et al. Determinants of early ponderal and statural growth in full-term infants in the EDEN mother-child cohort study. Am J Clin Nutr. 2010;92:594–602.

    Article  CAS  PubMed  Google Scholar 

  18. Linabery AM, Nahhas RW, Johnson W, Choh AC, Towne B, Odegaard AO, et al. Stronger influence of maternal than paternal obesity on infant and early childhood body mass index: the Fels longitudinal study. Pediatr Obes. 2013;8:159–69.

    Article  CAS  PubMed  Google Scholar 

  19. Poston L, Caleyachetty R, Cnattingius S, Corvalán C, Uauy R, Herring S, et al. Preconceptional and maternal obesity: epidemiology and health consequences. Lancet Diabetes Endocrinol. 2016;4:1025–36.

    Article  PubMed  Google Scholar 

  20. Godfrey KM, Reynolds RM, Prescott SL, Nyirenda M, Jaddoe VWV, Eriksson JG, et al. Influence of maternal obesity on the long-term health of offspring. Lancet Diabetes Endocrinol. 2017;5:53–64.

    Article  PubMed  Google Scholar 

  21. Dabelea D, Crume T. Maternal environment and the transgenerational cycle of obesity and diabetes. Diabetes. 2011;60:1849–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Baugh N, Harris DE, Aboueissa AM, Sarton C, Lichter E. The impact of maternal obesity and excessive gestational weight gain on maternal and infant outcomes in maine: analysis of pregnancy risk assessment monitoring system results from 2000 to 2010. J Pregnancy. 2016; 2016:5871313.

  23. Jharap VV, Santos S, Steegers EAP, Jaddoe VWV, Gaillard R. Associations of maternal obesity and excessive weight gain during pregnancy with subcutaneous fat mass in infancy. Early Hum Dev. 2017;108:23–8.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cordero P, Li J, Temple JL, Nguyen V, Oben JA. Epigenetic mechanisms of maternal obesity effects on the descendants. In: Parental obesity: intergenerational programming and consequences. 2016. p. 355–68.

  25. Agarwal P, Morriseau TS, Kereliuk SM, Doucette CA, Wicklow BA, Dolinsky VW. Maternal obesity, diabetes during pregnancy and epigenetic mechanisms that influence the developmental origins of cardiometabolic disease in the offspring. Crit Rev Clin Lab Sci. 2018;55:71–101.

    Article  CAS  PubMed  Google Scholar 

  26. Bulló M, García-Lorda P, Megias I, Salas-Salvadó J. Systemic inflammation, adipose tissue tumor necrosis factor, and leptin expression. Obes Res. 2003;11:525–31.

    Article  PubMed  Google Scholar 

  27. Park HS, Park JY, Yu R. Relationship of obesity and visceral adiposity with serum concentrations of CRP, TNF-α and IL-6. Diabetes Res Clin Pract. 2005;69:29–35.

    Article  CAS  PubMed  Google Scholar 

  28. Saltiel AR, Olefsky JM. Inflammatory mechanisms linking obesity and metabolic disease. J Clin Investig. 2017;127:1–4.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Glass CK, Olefsky JM. Inflammation and lipid signaling in the etiology of insulin resistance. Cell Metab. 2012;15:635–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yunna C, Mengru H, Lei W, Weidong C. Macrophage M1/M2 polarization. Eur J Pharmacol. 2020;877:173090.

    Article  PubMed  CAS  Google Scholar 

  31. Dasu MR, Devaraj S, Jialal I. High glucose induces IL-1beta expression in human monocytes: mechanistic insights. Am J Physiol Endocrinol Metab. 2007;293:E337–46.

    Article  CAS  PubMed  Google Scholar 

  32. Shanmugam N, Reddy MA, Guha M, Natarajan R. High glucose-induced expression of proinflammatory cytokine and chemokine genes in monocytic cells. Diabetes. 2003;52:1256–64.

    Article  CAS  PubMed  Google Scholar 

  33. Oliveira BAP, de Souza Pinhel M, Nicoletti CF, Cortes-Oliveira C, Quinhoneiro DCG, Noronha NY, et al. UCP2 and PLIN1 expression affects the resting metabolic rate and weight loss on obese patients. Obes Surg. 2017;27:343–48.

    Article  PubMed  Google Scholar 

  34. Cortes-Oliveira C, Nicoletti CF, de Souza Pinhel M, Oliveira BAP, Quinhoneiro DCG, Noronha NY, et al. UCP2 expression is associated with weight loss after hypocaloric diet intervention. Eur J Clin Nutr. 2017;71:402–6.

    Article  CAS  PubMed  Google Scholar 

  35. Zeyda M, Stulnig TM. Adipose tissue macrophages. Immunol Lett. 2007;112:61–7.

  36. Lumeng CN, Bodzin JL, Saltiel AR, Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Investig. 2007;117:175–84.

  37. Fernández-Real JM, Ricart W. Insulin resistance and chronic cardiovascular inflammatory syndrome. Endocrine Rev. 2003;24:278–301.

    Article  CAS  Google Scholar 

  38. Hotamisligil GS, Spiegelman BM. Tumor necrosis factor α: a key component of the obesity-diabetes link. Diabetes. 1994;43:1271–8.

  39. Barnes K, Miner J. Role of resistin in insulin sensitivity in rodents and humans. Curr Protein Pept Sci. 2009;10:96–107.

    Article  CAS  PubMed  Google Scholar 

  40. Sureshchandra S, Marshall NE, Wilson RM, Barr T, Rais M, Purnell JQ, et al. Inflammatory determinants of pregravid obesity in placenta and peripheral blood. Front Physiol. 2018;9:1089.

  41. Wan J, Shan Y, Fan Y, Fan C, Chen S, Sun J, et al. NFB inhibition attenuates LPS-induced TLR4 activation in monocyte cells. Mol Med Rep. 2016;14:4505–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Daan NMP, Koster MPH, Steegers-Theunissen RP, Eijkemans MJC, Fauser BCJM. Endocrine and cardiometabolic cord blood characteristics of offspring born to mothers with and without polycystic ovary syndrome. Fertil Steril. 2017;107:261–268.e3.

    Article  CAS  PubMed  Google Scholar 

  43. Gicquel C, El-Osta A, Le Bouc Y. Epigenetic regulation and fetal programming. Best Pract Res Clin Endocrinol Metab. 2008;22:1–16.

  44. Mochizuki K, Hariya N, Kubota T. Novel models of epigenetic gene regulation in the nutritional environment. Adv Exp Med Biol. 2018;1012:11–8.

  45. Koyanagi A, Zhang J, Dagvadorj A, Hirayama F, Shibuya K, Souza JP, et al. Macrosomia in 23 developing countries: an analysis of a multicountry, facility-based, cross-sectional survey. Lancet. 2013;381:476–83.

    Article  PubMed  Google Scholar 

  46. Carlsen EM, Renault KM, Nørgaard K, Nilas L, Jensen JEB, Hyldstrup L, et al. Newborn regional body composition is influenced by maternal obesity, gestational weight gain and the birthweight standard score. Acta Paediatr Int J Paediatr. 2014;103:939–45.

    Article  CAS  Google Scholar 

  47. Jensen DM, Damm P, Sørensen B, Mølsted-Pedersen L, Westergaard JG, Ovesen P, et al. Pregnancy outcome and prepregnancy body mass index in 2459 glucose-tolerant Danish women. Am J Obstet Gynecol. 2003;189:239–44.

    Article  PubMed  Google Scholar 

  48. Scarpelli D, Cardellini M, Andreozzi F, Laratta E, Hribal ML, Marini MA, et al. Variants of the interleukin-10 promoter gene are associated with obesity and insulin resistance but not type 2 diabetes in Caucasian Italian subjects. Diabetes. 2006;55:1529–33.

    Article  CAS  PubMed  Google Scholar 

  49. Almeida SM, Furtado JM, Mascarenhas P, Ferraz ME, Ferreira JC, Monteiro MP, et al. Association between LEPR, FTO, MC4R, and PPARG-2 polymorphisms with obesity traits and metabolic phenotypes in school-aged children. Endocrine. 2018;60:466–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ahmadian M, Suh JM, Hah N, Liddle C, Atikins AR, Downes M, et al. PPARγ signaling and metabolism: the good, the bad and the future. Nat Med. 2013;19:557–66.

    Article  CAS  PubMed  Google Scholar 

  51. Corzo C, Griffin PR. Targeting the peroxisome proliferator-activated receptor-γ to counter the inflammatory milieu in obesity. Diabetes Metab J. 2013;37:395–403.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Evans RM, Barish GD, Wang YX. PPARs and the complex journey to obesity. Nat Med. 2004;10:355–61.

    Article  CAS  PubMed  Google Scholar 

  53. Yang X, Li M, Haghiac M, Catalano PM, O’Tierney-Ginn P, Hauguel-de Mouzon S. Causal relationship between obesity-related traits and TLR4-driven responses at the maternal–fetal interface. Diabetologia. 2016;59:2459–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cifuentes-Zúñiga F, Arroyo-Jousse V, Soto-Carrasco G, Casanello P, Uauy R, Krause BJ, et al. IL-10 expression in macrophages from neonates born from obese mothers is suppressed by IL-4 and LPS/INFγ. J Cell Physiol. 2017;232:3693–701.

    Article  PubMed  CAS  Google Scholar 

  55. Wallace JM, Milne JS, Aitken RP, Redmer DA, Reynolds LP, Luther JS, et al. Undernutrition and stage of gestation influence fetal adipose tissue gene expression. J Mol Endocrinol. 2015;54:263–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Joss-Moore LA, Wang Y, Campbell MS, Moore B, Yu X, Callaway CW, et al. Uteroplacental insufficiency increases visceral adiposity and visceral adipose PPARγ2 expression in male rat offspring prior to the onset of obesity. Early Hum Dev. 2010;86:179–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pacce S, Saure C, Mazza CS, Garcia S, Tomzig RG, Lopez AP, et al. Impact of maternal nutritional status before and during pregnancy on neonatal body composition: a cross-sectional study. Diabetes Metab Syndr Clin Res Rev. 2016;10:S7–12.

    Article  Google Scholar 

  58. Rosado-Yépez PI, Chávez-Corral DV, Reza-López SA, Leal-Berumen I, Fierro-Murga R, Caballero-Cummings S, et al. Relation between pregestational obesity and characteristics of the placenta. J Matern Neonatal Med. 2020;33:3425–30.

  59. Kac G, Arnold CD, Matias SL, Mridha MK, Dewey KG. Gestational weight gain and newborn anthropometric outcomes in rural Bangladesh. Matern Child Nutr. 2019;15:e12816.

  60. Weatherborn MM, Stark S, Landau D. Differences in body composition between appropriate for gestational age and large for gestational age term neonates [6E]. Obstet Gynecol. 2019;133:52S–53S.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Prof. Walter Manso Figueiredo and Prof. Angela Aparecida Costa for assistance in data collection, and the Health Secretary of Araraquara for allowing us to carry out the research in the city.

Funding

This study was supported by the São Paulo Research Foundation (FAPESP) (grant number 2015/03333-6). PN received an MPH scholarship from the Coordination for the Improvement of Higher Education Personnel (CAPES). NND and PPA received Post-Doctorate and Doctorate scholarships from FAPESP, grant numbers 2017/07143-2 and 2018/17824-0, respectively. FAPESP and CAPES had no role in the design, analysis, or writing of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

PHCR, PN, and CBN designed the research; PN, PPA, and NND collected the data; LAL and PHCR coordinated the fieldwork; PN, CFN, NYN, and CBN performed the laboratory work; PN, CFN, NYN, CBN, and PHCR were responsible for data management and performing analyses; PN, CFN, NYN, CBN, MMR, and PHCR interpreted the data; CFN wrote the first draft of the manuscript; CFN, PHCR, and CBN revised each draft for important intellectual content. All authors read and approved the final manuscript.

Corresponding author

Correspondence to P. H. C. Rondó.

Ethics declarations

Conflict of interest

The authors declare no cmpeting interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakandakare, P., Nicoletti, C.F., Noronha, N.Y. et al. Associations between obesity-related gene expression in maternal and cord blood and newborn adiposity: findings from the Araraquara Cohort study. Int J Obes 45, 1958–1966 (2021). https://doi.org/10.1038/s41366-021-00857-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-021-00857-8

Search

Quick links