Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Behavior, Psychology and Sociology

Obesity-induced taste dysfunction, and its implications for dietary intake

Abstract

The incidence of obesity has dramatically increased in recent years, and poses a public health challenge for which an effective and scalable intervention strategy is yet to be found. Our food choices are one of the primary drivers of obesity, where the overconsumption of energy from foods high in fat and sugar can be particularly problematic. Unfortunately, these same foods also tend to be highly palatable. We select foods more on their sensory properties than on any other factor, such as price, convenience, or healthfulness. Previous evidence from human sensory studies has suggested a depressed sense of taste in panelists with obesity. Evidence from animal models also demonstrates a clear deficiency in taste buds occurring with obesity, suggesting that damage to the taste system may result from an obese state. In this review only taste, as opposed to smell, will be examined. Here we seek to bring together evidence from a diverse array of human and animal studies into taste response, dietary intake, and physiology, to better understand changes in taste with obesity, with the goal of understanding whether taste may provide a novel target for intervention in the treatment of obesity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The interplay between obesity, taste, and food intake.

Similar content being viewed by others

References

  1. Hunter DJ, Reddy KS. Noncommunicable Diseases. N Engl J Med. 2013;369:1336–43.

    Article  CAS  PubMed  Google Scholar 

  2. Hamann A. Aktuelles zur Adipositas (mit und ohne Diabetes). Diabetologe. 2017;13:331–41.

    Article  Google Scholar 

  3. Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract. 2014;103:137–49.

    Article  CAS  PubMed  Google Scholar 

  4. Zalesin KC, Franklin BA, Miller WM, Peterson ED, McCullough PA. Impact of obesity on cardiovascular disease. Med Clin North Am. 2011;95:919–37.

    Article  PubMed  Google Scholar 

  5. Seravalle G, Grassi G. Obesity and hypertension. Pharmacol Res. 2017;122:1–7.

    Article  CAS  PubMed  Google Scholar 

  6. Després JP, Lemieux I. Abdominal obesity and metabolic syndrome. Nature. 2006;444:881–7.

    Article  PubMed  CAS  Google Scholar 

  7. Chen C, Ye Y, Zhang Y, Pan XF, Pan A. Weight change across adulthood in relation to all cause and cause specific mortality: prospective cohort study. BMJ. 2019;367:15584.

  8. Kolotkin RL, Andersen JR. A systematic review of reviews: exploring the relationship between obesity, weight loss and health-related quality of life. Clin Obes. 2017;7:273–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wright SM, Aronne LJ. Causes of obesity. Abdom Imaging. 2012;37:730–2.

    Article  PubMed  Google Scholar 

  10. Jeffery RW, Harnack LJ. Evidence implicating eating as a primary driver for the obesity epidemic. Diabetes. 2007;56:2673–6.

    Article  CAS  PubMed  Google Scholar 

  11. Young LR, Nestle M. Expanding portion sizes in the US marketplace: implications for nutrition counseling. J Am Diet Assoc. 2003;103:231–40.

    Article  PubMed  Google Scholar 

  12. Ford ES, Dietz WH. Trends in energy intake among adults in the United States: findings from NHANES. Am J Clin Nutr. 2013;97:848–53.

    Article  CAS  PubMed  Google Scholar 

  13. Haslam DW, James WPT. Obesity. Lancet. 2005;366:1197–209.

    Article  PubMed  Google Scholar 

  14. Rehm CD, Peñalvo JL, Afshin A, Mozaffarian D. Dietary intake among US adults. JAMA. 2016;1999–2012.

  15. Liu J, Rehm CD, Onopa J, Mozaffarian D. Trends in diet quality among Youth in the United States. JAMA. 2020;1999–2016.

  16. Crino M, Sacks G, Vandevijvere S, Swinburn B, Neal B. The influence on population weight gain and obesity of the macronutrient composition and energy density of the food supply. Curr Obes Rep. 2015;4:1–10.

    Article  PubMed  Google Scholar 

  17. Naughton SS, Mathai ML, Hryciw DH, McAinch AJ. Australia’s nutrition transition 1961–2009: A focus on fats. Br J Nutr. 2015;114:337–46.

    Article  CAS  PubMed  Google Scholar 

  18. Rikkers W, Lawrence D, Hafekost K, Mitrou F, Zubrick SR. Trends in sugar supply and consumption in Australia: is there an Australian Paradox? BMC Public Health. 2013;13:1–11.

    Google Scholar 

  19. Vandevijvere S, Chow CC, Hall KD, Umali E, Swinburn BA. L’accroissement de la disponibilité énergétique alimentaire comme facteur majeur de l’épidémie d’obésité: Une analyse à l’échelle internationale. Bull World Health Organ. 2015;93:446–56.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chaput JP, Doucet É, Tremblay A. Obesity: a disease or a biological adaptation? An update. Obes Rev. 2012;13:681–91.

    Article  CAS  PubMed  Google Scholar 

  21. Hooper L, Abdelhamid A, Bunn D, Brown T, Summerbell CD, Skeaff CM. Effects of total fat intake on body weight. Cochrane Database Syst Rev. 2015. https://doi.org/10.1002/14651858.CD011834.

  22. Morenga LTE, Mallard S, Mann J. Dietary sugars and body weight: systematic review and meta-analyses of randomised controlled trials and cohort studies. BMJ. 2013;345.

  23. Mozaffarian D. Dietary and policy priorities for cardiovascular disease, diabetes, and obesity. Circulation. 2016;133:187–225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. King NA, Hopkins M, Caudwell P, Stubbs RJ, Blundell JE. Beneficial effects of exercise: shifting the focus from body weight to other markers of health. Br J Sports Med. 2009;43:924–7.

    Article  CAS  PubMed  Google Scholar 

  25. Foright RM, Presby DM, Sherk VD, et al. Is regular exercise an effective strategy for weight loss maintenance? Physiol Behav. 2018;188:86–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rosenbaum M, Leibel RL. Adaptive thermogenesis in humans. Int J Obes. 2010;34:S47–55.

    Article  Google Scholar 

  27. Chen KY, Brychta RJ, Sater ZA, Cassimatis TM, Cero C, Fletcher LA, et al. Opportunities and challenges in the therapeutic activation of human energy expenditure and thermogenesis to manage obesity. J Biol Chem. 2020;295:1926–42.

    Article  CAS  PubMed  Google Scholar 

  28. Diet, nutrition and the prevention of chronic diseases. World Health Organ Tech Rep Ser. 2003;916:i–viii.

  29. Aggarwal A, Rehm CD, Monsivais P, Drewnowski A. Importance of taste, nutrition, cost and convenience in relation to diet quality: evidence of nutrition resilience among US adults using National Health and Nutrition Examination Survey (NHANES) 2007–2010. Prev Med (Baltim). 2016;90:184–92.

    Article  Google Scholar 

  30. Berridge KC. Measuring hedonic impact in animals and infants: microstructure of affective taste reactivity patterns. Neurosci Biobehav Rev. 2000;24:173–98.

    Article  CAS  PubMed  Google Scholar 

  31. Diószegi J, Llanaj E, Ádány R. Genetic background of taste perception, taste preferences, and its nutritional implications: a systematic review. Front Genet. 2019;10:1–22.

    Article  CAS  Google Scholar 

  32. Nolden AA, Feeney EL. Genetic differences in taste receptors: implications for the food industry. Annu Rev Food Sci Technol. 2020;11:183–204.

    Article  CAS  PubMed  Google Scholar 

  33. De Carli L, Gambino R, Lubrano C, Rosato R, Bongiovanni D, Lanfrancoet F, et al. Impaired taste sensation in type 2 diabetic patients without chronic complications: a case–control study. J Endocrinol Invest. 2018;41:765–72.

    Article  PubMed  CAS  Google Scholar 

  34. Ahmed K, Penney N, Darzi A, Purkayastha S. Taste changes after bariatric surgery: a systematic review. Obes Surg. 2018;28:3321–32.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Cattaneo C, Gargari G, Koirala R, Laureati M, Riso P, Guglielmetti S. et al. New insights into the relationship between taste perception and oral microbiota composition. Sci Rep.2019;9:1–8.

    Article  Google Scholar 

  36. Chang SH, Stoll CRT, Song J, Varela JE, Eagon CJ, Colditz GA. The effectiveness and risks of bariatric surgery an updated systematic review and meta-analysis 2003–2012. JAMA Surg. 2014;149:275–87.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Curioni CC, Lourenço PM. Long-term weight loss after diet and exercise: a systematic review. Int J Obes. 2005;29:1168–74.

    Article  CAS  Google Scholar 

  38. Wu T, Gao X, Chen M, Van Dam RM. Long-term effectiveness of diet-plus-exercise interventions vs. diet-only interventions for weight loss: a meta-analysis: obesity management. Obes Rev. 2009;10:313–23.

    Article  CAS  PubMed  Google Scholar 

  39. Glanz K, Basil M, Maibach E, Goldberg J, Snyder D. Why Americans eat what they do: taste, nutrition, cost, convenience, and weight control concerns as influences on food consumption. J Am Diet Assoc. 1998;98:1118–26.

    Article  CAS  PubMed  Google Scholar 

  40. Kourouniotis S, Keast RSJ, Riddell LJ, Lacy K, Thorpe MG, Cicerale S. The importance of taste on dietary choice, behaviour and intake in a group of young adults. Appetite. 2016;103:1–7.

    Article  CAS  PubMed  Google Scholar 

  41. Zylan KD. Gender differences in the reasons given for meal termination. Appetite. 1996;26:37–44.

    Article  CAS  PubMed  Google Scholar 

  42. Beauchamp GK, Cowart BJ. Development of Sweet Taste. 1987:127–40.

  43. Drewnowski A. Why do we like fat? J Am Diet Assoc. 1997;97(7 Suppl.):S58–62.

    Article  Google Scholar 

  44. Lease H, Hendrie GA, Poelman AAM, Delahunty C, Cox DN. A Sensory-Diet database: a tool to characterise the sensory qualities of diets. Food Qual Prefer. 2016;49:20–32.

    Article  Google Scholar 

  45. La Fleur SE, Van Rozen AJ, Luijendijk MCM, Groeneweg F, Adan RAH. A free-choice high-fat high-sugar diet induces changes in arcuate neuropeptide expression that support hyperphagia. Int J Obes. 2010;34:537–46.

    Article  CAS  Google Scholar 

  46. Astrup A, Buemann B, Western P, Toubro S, Raben A, Christensen NJ. Obesity as an adaptation to a high-fat diet: evidence from a cross- sectional study. Am J Clin Nutr. 1994;59:350–5.

    Article  CAS  PubMed  Google Scholar 

  47. Warwick ZS, Schiffman SS. Sensory evaluations of fat-sucrose and fat-salt mixtures: relationship to age and weight status. Physiol Behav. 1990;48:633–6.

    Article  CAS  PubMed  Google Scholar 

  48. Blundell JE, Stubbs RJ. High and low carbohydrate and fat intakes: limits imposed by appetite and palatability and their implications for energy balance. Eur J Clin Nutr. 1999;53:s148–65.

    Article  PubMed  Google Scholar 

  49. Harnack LJ, Jeffery RW, Boutelle KN. Temporal trends in energy intake in the United States: an ecologic perspective. Am J Clin Nutr. 2000;71:1478–84.

    Article  CAS  PubMed  Google Scholar 

  50. Heitmann BL, Lissner L, Osler M. Do we eat less fat, or just report so? Int J Obes. 2000;24:435–42.

    Article  CAS  Google Scholar 

  51. Thompson FE, Byers T. Dietary assessment resource manual. J Nutr. 1994;124(11 Suppl.):2245S–317S.

    Google Scholar 

  52. Chambers E, McGuire B, Godwin S, McDowell M, Vecchio F. Quantifying portion sizes for selected snack foods and beverages in 24- hour dietary recalls. Nutr Res. 2000;20:315–26.

    Article  CAS  Google Scholar 

  53. Faggiano F, Vineis P, Cravanzola D, Pisani P, Xompero G, Riboli E, et al. Validation of a method for the estimation of food portion size. Epidemiology. 1992;3:379–82.

    Article  CAS  PubMed  Google Scholar 

  54. Harnack L, Steffen L, Arnett DK, Gao S, Luepker RV. Accuracy of estimation of large food portions. J Am Diet Assoc. 2004;104:804–6.

    Article  PubMed  Google Scholar 

  55. Chambers L, McCrickerd K, Yeomans MR. Optimising foods for satiety. Trends Food Sci Technol. 2015;41:149–60.

    Article  CAS  Google Scholar 

  56. Keskitalo K, Tuorila H, Spector TD, Cherkas LF, Knaapila A, Kaprio J, et al. The Three-Factor Eating Questionnaire, body mass index, and responses to sweet and salty fatty foods: a twin study of genetic and environmental associations. Am J Clin Nutr. 2008;88:263–71.

    Article  CAS  PubMed  Google Scholar 

  57. Jayasinghe SN, Kruger R, Walsh DCI, et al. Is sweet taste perception associated with sweet food liking and intake? Nutrients. 2017;9:750.

    Article  PubMed Central  CAS  Google Scholar 

  58. Cattaneo C, Riso P, Laureati M, Gargari G, Pagliarini E. Exploring associations between interindividual differences in taste perception, oral microbiot a composition, and reported food intake. Nutrients. 2019;11:1167.

    Article  PubMed Central  CAS  Google Scholar 

  59. Han P, Keast RSJ, Roura E. Salivary leptin and TAS1R2/TAS1R3 polymorphisms are related to sweet taste sensitivity and carbohydrate intake from a buffet meal in healthy young adults. Br J Nutr. 2017;118:763–70.

    Article  CAS  PubMed  Google Scholar 

  60. Low JYQ, Lacy KE, McBride R, Keast RSJ. The association between sweet taste function, anthropometry, and dietary intake in adults. Nutrients. 2016;8:241.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Tan SY, Tucker RM. Sweet taste as a predictor of dietary intake: a systematic review. Nutrients. 2019;11:94.

    Article  PubMed Central  CAS  Google Scholar 

  62. Wise PM, Nattress L, Flammer LJ, Beauchamp GK. Reduced dietary intake of simple sugars alters perceived sweet taste intensity but not perceived pleasantness. Am J Clin Nutr. 2016;103:50–60.

    Article  CAS  PubMed  Google Scholar 

  63. Bertino M, Beauchamp GK, Engelman K. Long-term reduction in dietary sodium alters the taste of salt. Am J Clin Nutr. 1982;36:1134–44.

    Article  CAS  PubMed  Google Scholar 

  64. Beauchamp GK, Bertino M, Engelman K. Modification of salt taste. Ann Intern Med. 1983;98(5 Suppl.):763–9.

    Article  CAS  PubMed  Google Scholar 

  65. Noel CA, Sugrue M, Dando R. Participants with pharmacologically impaired taste function seek out more intense, higher calorie stimuli. Appetite.2017;117:74–81.

    Article  PubMed  Google Scholar 

  66. Kashima N, Kimura K, Nishitani N, Endo MY, Fukuba Y, Kashima H. Suppression of oral sweet sensations during consumption of sweet food in humans: effects on gastric emptying rate, glycemic response, appetite, food satisfaction and desire for basic tastes. Nutrients. 2020;12:1249.

    Article  PubMed Central  CAS  Google Scholar 

  67. Cox DN, Perry L, Moore PB, Vallis L, Mela DJ. Sensory and hedonic associations with macronutrient and energy intakes of lean and obese consumers. Int J Obes. 1999;23:403–10.

    Article  CAS  Google Scholar 

  68. Zhou L, Stamler J, Chan Q, Van Horn L, Daviglus ML, Dyer AR, et al. Salt intake and prevalence of overweight/obesity in Japan, China, the United Kingdom, and the United States: the INTERMAP Study. Am J Clin Nutr. 2019;110:34–40.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Monteiro CA, Levy RB, Claro RM, De Castro IRR, Cannon G. Increasing consumption of ultra-processed foods and likely impact on human health: evidence from Brazil. Public Health Nutr. 2011;14:5–13.

    Article  PubMed  Google Scholar 

  70. Rust P, Ekmekcioglu C. Impact of salt intake on the pathogenesis and treatment of hypertension. Adv Exp Med Biol. 2017;956:61–84.

    Article  PubMed  Google Scholar 

  71. Bertino M, Beauchamp GK, Engelman K. Increasing dietary salt alters salt taste preference. Physiol Behav. 1986;38:203–13.

    Article  CAS  PubMed  Google Scholar 

  72. Blais CA, Pangborn RM, Borhani NO, Ferrell MF, Prineas RJ, Laing B. Effect of dietary sodium restriction on taste responses to sodium chloride: a longitudinal study. Am J Clin Nutr. 1986;44:232–43.

    Article  CAS  PubMed  Google Scholar 

  73. Bobowski N. Shifting human salty taste preference: potential opportunities and challenges in reducing dietary salt intake of Americans. Chemosens Percept. 2015;8:112–6.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Hayes JE, Sullivan BS, Duffy VB. Explaining variability in sodium intake through oral sensory phenotype, salt sensation and liking. Physiol Behav. 2010;100:369–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kim GH, Lee HM. Frequent consumption of certain fast foods may be associated with an enhanced preference for salt taste. J Hum Nutr Diet. 2009;22:475–80.

    Article  CAS  PubMed  Google Scholar 

  76. Zhang Z, Zhang X. Salt taste preference, sodium intake and gastric cancer in China. Asian Pacific J Cancer Prev. 2011;12:1207–10.

    Google Scholar 

  77. Kastorini CM, Milionis HJ, Esposito K, Giugliano D, Goudevenos JA, Panagiotakos DB. The effect of mediterranean diet on metabolic syndrome and its components: a meta-analysis of 50 studies and 534,906 individuals. J Am Coll Cardiol. 2011;57:1299–313.

    Article  CAS  PubMed  Google Scholar 

  78. Veček NN, Mucalo L, Dragun R, Miličević T, Pribisalić A, Patarčićet I, et al. The association between salt taste perception, mediterranean diet and metabolic syndrome: A cross-sectional study. Nutrients. 2020;12:1164.

    Article  PubMed Central  CAS  Google Scholar 

  79. Noel CA, Finlayson G, Dando R. Prolonged exposure to monosodium glutamate in healthy young adults decreases perceived umami taste and diminishes appetite for savory foods. J Nutr. 2018;148:980–8.

    Article  PubMed  Google Scholar 

  80. Newman LP, Bolhuis DP, Torres SJ, Keast RSJ. Dietary fat restriction increases fat taste sensitivity in people with obesity. Obesity. 2016;24:328–34.

    Article  CAS  PubMed  Google Scholar 

  81. Halton TL, Hu FB. The effects of high protein diets on thermogenesis, satiety and weight loss: a critical review. J Am Coll Nutr. 2004;23:373–85.

    Article  PubMed  Google Scholar 

  82. Luscombe-Marsh ND, Smeets AJPG, Westerterp-Plantenga MS. Taste sensitivity for monosodium glutamate and an increased liking of dietary protein. Br J Nutr. 2008;99:904–8.

    Article  CAS  PubMed  Google Scholar 

  83. Kubota M, Toda C, Nagai-Moriyama A. Relationship between umami taste acuity with sweet or bitter taste acuity and food selection in Japanese women university students. Asia Pac J Clin Nutr. 2018;27:107–12.

    CAS  PubMed  Google Scholar 

  84. Nelson G, Chandrashekar J, Hoon MA, et al. An amino-acid taste receptor. Nature. 2002;416:199–202.

    Article  CAS  PubMed  Google Scholar 

  85. Shahbandi A, Choo E, Dando R. Receptor regulation in taste: can diet influence how we perceive foods? J Multidiscip J. 2018;1:106–15.

    Google Scholar 

  86. Westerterp KR. Perception, passive overfeeding and energy metabolism. Physiol Behav. 2006;89:62–5.

    Article  CAS  PubMed  Google Scholar 

  87. Heinze JM, Costanzo A, Baselier I, Fritsche A, Frank-Podlech S, Keast R. Detection thresholds for four different fatty stimuli are associated with increased dietary intake of processed high-caloric food. Appetite. 2018;123:7–13.

    Article  PubMed  Google Scholar 

  88. Proserpio C, Laureati M, Bertoli S, Battezzati A, Pagliarini E. Determinants of obesity in Italian adults: the role of taste sensitivity, food liking, and food neophobia. Chem Senses. 2016;41:169–76.

    CAS  PubMed  Google Scholar 

  89. Stewart JE, Feinle-Bisset C, Golding M, Delahunty C, Clifton PM, Keast RSJ. Oral sensitivity to fatty acids, food consumption and BMI in human subjects. Br J Nutr. 2010;104:145–52.

    Article  CAS  PubMed  Google Scholar 

  90. Stewart JE, Newman LP, Keast RSJ. Oral sensitivity to oleic acid is associated with fat intake and body mass index. Clin Nutr. 2011;30:838–44.

    Article  CAS  PubMed  Google Scholar 

  91. Bartoshuk LM, Duffy VB, Hayes JE, Moskowitz HR, Snyder DJ. Psychophysics of sweet and fat perception in obesity: problems, solutions and new perspectives. Philos Trans R Soc B Biol Sci. 2006;361:1137–48.

    Article  Google Scholar 

  92. Ettinger L, Duizer L, Caldwell T. Body fat, sweetness sensitivity, and preference: determining the relationship. Can J Diet Pract Res. 2012;73:45–8.

    Article  PubMed  Google Scholar 

  93. Overberg J, Hummel T, Krude H, Wiegand S. Differences in taste sensitivity between obese and non-obese children and adolescents. Arch Dis Child. 2012;97:1048–52.

    Article  PubMed  Google Scholar 

  94. Pepino MY, Finkbeiner S, Beauchamp GK, Mennella JA. Obese women have lower monosodium glutamate taste sensitivity and prefer higher concentrations than do normal-weight women. Obesity. 2010;18:959–65.

    Article  PubMed  Google Scholar 

  95. Vignini A, Borroni F, Sabbatinelli J, Pugnaloni S, Alia S, Taus M, et al. General decrease of taste sensitivity is related to increase of BMI: a simple method to monitor eating behavior. Dis Markers. 2019;2019:1–8.

    Article  CAS  Google Scholar 

  96. Park DC, Yeo JH, Ryu IY, Kim SH, Jung J, Yeo SG. Differences in taste detection thresholds between normal-weight and obese young adults. Acta Otolaryngol. 2015;135:478–83.

    Article  PubMed  Google Scholar 

  97. Coltell O, Sorlí JV, Asensio EM, Fernández-Carrión R, Barragán R, Ortega-Azorín C, et al. Association between taste perception and adiposity in overweight or obese older subjects with metabolic syndrome and identification of novel taste-related genes. Am J Clin Nutr. 2019;109:1709–23.

    Article  PubMed  Google Scholar 

  98. Stewart JE, Keast RSJ. Recent fat intake modulates fat taste sensitivity in lean and overweight subjects. Int J Obes. 2012;36:834–42.

    Article  CAS  Google Scholar 

  99. He K, Zhao L, Daviglus ML, Dyer AR, Van Horn L, Garsidee D, et al. Association of monosodium glutamate intake with overweight in Chinese adults: the INTERMAP study. Obesity. 2008;16:1875–80.

    Article  CAS  PubMed  Google Scholar 

  100. Feeney EL, Leacy L, O‘kelly M, Leacy N, Phelan A, Crowley L, et al. Sweet and umami taste perception differs with habitual exercise in males. Nutrients. 2019;11:155.

    Article  PubMed Central  CAS  Google Scholar 

  101. Liu D, Archer N, Duesing K, Hannan G, Keast R. Mechanism of fat taste perception: association with diet and obesity. Prog Lipid Res. 2016;63:41–9.

    Article  CAS  PubMed  Google Scholar 

  102. Pepino MY, Love-Gregory L, Klein S, Abumrad NA. The fatty acid translocase gene CD36 and lingual lipase influence oral sensitivity to fat in obese subjects. J Lipid Res. 2012;53:561–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Mrizak I, Šerý O, Plesnik J, Arfa A, Fekih M, Bouslemae A, et al. The A allele of cluster of differentiation 36 (CD36) SNP 1761667 associates with decreased lipid taste perception in obese Tunisian women. Br J Nutr. 2015;113:1330–7.

    Article  CAS  PubMed  Google Scholar 

  104. Sayed A, Šerý O, Plesnik J, Daoudi H, Rouabah A, Rouabahe L, et al. CD36 AA genotype is associated with decreased lipid taste perception in young obese, but not lean, children. Int J Obes. 2015;39:920–4.

    Article  CAS  Google Scholar 

  105. Karmous I, Plesník J, Khan AS, Šerý O, Abid A, Mankai A, et al. Orosensory detection of bitter in fat-taster healthy and obese participants: genetic polymorphism of CD36 and TAS2R38. Clin Nutr. 2018;37:313–20.

    Article  CAS  PubMed  Google Scholar 

  106. Tucker RM, Nuessle TM, Garneau NL, Smutzer G, Mattes RD. No difference in perceived intensity of linoleic acid in the oral cavity between obese and nonobese individuals. Chem Senses. 2015;40:557–63.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Costanzo A, Orellana L, Nowson C, Duesing K, Keast R. Fat taste sensitivity is associated with short-term and habitual fat intake. Nutrients. 2017;9:781.

    Article  PubMed Central  CAS  Google Scholar 

  108. Bolhuis DP, Costanzo A, Newman LP, Keast RSJ. Salt promotes passive overconsumption of dietary fat in humans. J Nutr. 2016;146:838–45.

    Article  CAS  PubMed  Google Scholar 

  109. Hardikar S, Höchenberger R, Villringer A, Ohla K. Higher sensitivity to sweet and salty taste in obese compared to lean individuals. Appetite. 2017;111:158–65.

    Article  PubMed  Google Scholar 

  110. Drewnowski A, Kurth CL, Rahaim JE. Taste preferences in human obesity: environmental and familial factors. Am J Clin Nutr. 1991;54:635–41.

    Article  CAS  PubMed  Google Scholar 

  111. Enns MP, Van Itallie TB, Grinker JA. Contributions of age, sex and degree of fatness on preferences and magnitude estimations for sucrose in humans. Physiol Behav. 1979;22:999–1003.

    Article  CAS  PubMed  Google Scholar 

  112. Frijters JE, Rasmussen-Conrad EL. Sensory discrimination, intensity perception, and affective judgment of sucrose-sweetness in the overweight. J Gen Psychol. 1982;107(2 d Half):233–47.

    Article  CAS  PubMed  Google Scholar 

  113. Rodin J, Moskowitz HR, Bray GA. Relationship between obesity, weight loss, and taste responsiveness. Physiol Behav. 1976;17:591–7.

    Article  CAS  PubMed  Google Scholar 

  114. Thompson DA, Moskowitz HR, Campbell RG. Taste and olfaction in human obesity. Physiol Behav. 1977;19:335–7.

    Article  CAS  PubMed  Google Scholar 

  115. Noel CA, Cassano PA, Dando R. College-aged males experience attenuated sweet and salty taste with modest weight gain. J Nutr. 2017;147:1885–91.

    Article  CAS  PubMed  Google Scholar 

  116. Kalveramn L, Gohlisch J, Brauchmann J, Overberg J, Kühnen P, Wiegand S. Lifestyle Intervention: a longitudinal observational study in pediatric patients with obesity. Child Obes. 2021;17:136–43.

    Article  Google Scholar 

  117. Singh S. Exploring the associations between sweet taste perception and habitual dietary intake in New Zealand European women. Massey University. Published online 2018.

  118. Miyaki T, Imada T, Shuzhen Hao S, Kimura E. Monosodium l-glutamate in soup reduces subsequent energy intake from high-fat savoury food in overweight and obese women. Br J Nutr. 2016;115:176–84.

    Article  CAS  PubMed  Google Scholar 

  119. Masic U, Yeomans MR. Does monosodium glutamate interact with macronutrient composition to influence subsequent appetite? Physiol Behav. 2013;116–7:23–9.

    Article  CAS  Google Scholar 

  120. Anderson GH, Fabek H, Akilen R, Chatterjee D, Kubant R. Acute effects of monosodium glutamate addition to whey protein on appetite, food intake, blood glucose, insulin and gut hormones in healthy young men. Appetite. 2018;120:92–9.

    Article  PubMed  Google Scholar 

  121. Ventura AK, Beauchamp GK, Mennella JA. Infant regulation of intake: the effect of free glutamate content in infant formulas. Am J Clin Nutr. 2012;95:875–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Masic U, Yeomans MR. Umami flavor enhances appetite but also increases satiety. Am J Clin Nutr. 2014;100:532–8.

    Article  CAS  PubMed  Google Scholar 

  123. He K, Du S, Xun P, Sharma S, Wang H, Zhai F, et al. Consumption of monosodium glutamate in relation to incidence of overweight in Chinese adults: China Health and Nutrition Survey (CHNS). Am J Clin Nutr. 2011;93:1328–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Shi Z, Luscombe-Marsh ND, Wittert GA, Yuan B, Dai Y, Pan X, et al. Monosodium glutamate is not associated with obesity or a greater prevalence of weight gain over 5 years: findings from the Jiangsu Nutrition Study of Chinese adults. Br J Nutr. 2010;104:457–63.

    Article  CAS  PubMed  Google Scholar 

  125. Samuels A. Monosodium glutamate is not associated with obesity or a greater prevalence of weight gain over 5 years: findings from the Jiangsu Nutrition Study of Chinese adults—Comments by Samuels. Br J Nutr. 2010;104:1729.

    Article  CAS  PubMed  Google Scholar 

  126. He K, Daviglus ML, Stamler J. Response to “evidence that MSG does not induce obesity”. Obesity. 2009;17:630–1.

    Article  Google Scholar 

  127. Deglaire A, Méjean C, Castetbon K, Kesse-Guyot E, Hercberg S, Schlich P. Associations between weight status and liking scores for sweet, salt and fat according to the gender in adults (The Nutrinet-Santé study). Eur J Clin Nutr. 2015;69:40–6.

    Article  CAS  PubMed  Google Scholar 

  128. Donaldson LF, Bennett L, Baic S, Melichar JK. Taste and weight: is there a link? Am J Clin Nutr. 2009;90:800S–3S.

    Article  CAS  PubMed  Google Scholar 

  129. Pasquet P, Frelut ML, Simmen B, Hladik CM, Monneuse MO. Taste perception in massively obese and in non-obese adolescents. Int J Pediatr Obes. 2007;2:242–8.

    Article  PubMed  Google Scholar 

  130. Tucker RM, Edlinger C, Craig BA, Mattes RD. Associations between BMI and fat taste sensitivity in humans. Chem Senses. 2014;39:349–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Tucker RM, Mattes RD. Influences of repeated testing on nonesterified fatty acid taste. Chem Senses. 2013;38:325–32.

    Article  CAS  PubMed  Google Scholar 

  132. Keast RSJ, Azzopardi KM, Newman LP, Haryono RY. Impaired oral fatty acid chemoreception is associated with acute excess energy consumption. Appetite. 2014;80:1–6.

    Article  PubMed  Google Scholar 

  133. Costanzo A, Russell CG, Lewin S, Keast R. A fatty acid mouth rinse decreases self-reported hunger and increases self-reported fullness in healthy Australian adults: a randomized cross-over trial. Nutrients. 2020;12:678.

    Article  PubMed Central  CAS  Google Scholar 

  134. Stewart JE, Seimon RV, Otto B, Keast RSJ, Clifton PM, Feinle-Bisset C. Marked differences in gustatory and gastrointestinal sensitivity to oleic acid between lean and obese men. Am J Clin Nutr. 2011;93:703–11.

    Article  CAS  PubMed  Google Scholar 

  135. Liu D, Costanzo A, Evans MDM, Archer NS, Nowson C, Duesing K, et al. Expression of the candidate fat taste receptors in human fungiform papillae and the association with fat taste function. Br J Nutr. 2018;120:64–73.

    Article  CAS  PubMed  Google Scholar 

  136. Kaufman A, Choo E, Koh A, Dando R. Inflammation arising from obesity reduces taste bud abundance and inhibits renewal. PLoS Biol. 2018;16:e2001959.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Kaufman A, Kim J, Noel C, Dando R. Taste loss with obesity in mice and men. Int J Obes. 2020;44:739–43.

    Article  CAS  Google Scholar 

  138. Ahart Z, Martin L, Kemp B, Banik DD, Roberts SGE, Torregrossa AM, et al. Differential effects of diet and weight on taste responses in diet-induced obese mice. Obesity. 2019;28:284–92.

    Article  PubMed  CAS  Google Scholar 

  139. Chen K, Yan J, Suo Y, Li J, Wang Q, Lv B. Nutritional status alters saccharin intake and sweet receptor mRNA expression in rat taste buds. Brain Res. 2010;1325:53–62.

    Article  CAS  PubMed  Google Scholar 

  140. Chevrot M, Bernard A, Ancel D, Buttet M, Martin C, Abdoul-Azize S, et al. Obesity alters the gustatory perception of lipids in the mouse: plausible involvement of lingual CD36. J Lipid Res. 2013;54:2485–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Maliphol AB, Garth DJ, Medler KF. Diet-induced obesity reduces the responsiveness of the peripheral taste receptor cells. PLoS ONE. 2013;8:e79403.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Zhang XJ, Zhou LH, Ban X, Liu DX, Jiang W, Liu XM. Decreased expression of CD36 in circumvallate taste buds of high-fat diet induced obese rats. Acta Histochem. 2011;113:663–7.

    Article  CAS  PubMed  Google Scholar 

  143. Ozdener MH, Subramaniam S, Sundaresan S, Sery O, Hashimoto T, Asakawa Y, et al. CD36- and GPR120-mediated Ca2+. signaling in human taste bud cells mediates differential responses to fatty acids and is altered in obese mice. Gastroenterology. 2014;146:995–1005.

    Article  CAS  PubMed  Google Scholar 

  144. Fukuwatari T, Kawada T, Tsuruta M, Hiraoka T, Iwanaga T, Sugimoto E, et al. Expression of the putative membrane fatty acid transporter (FAT) in taste buds of the circumvallate papillae in rats. FEBS Lett. 1997;414:461–4.

    Article  CAS  PubMed  Google Scholar 

  145. Laugerette F, Passilly-Degrace P, Patris B, Niot I, Febbraio M, Montmayeur JP, et al. CD36 involvement in orosensory detection of dietary lipids, spontaneous fat preference, and digestive secretions. J Clin Invest. 2005;115:3177–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Bernard A, Ancel D, Neyrinck AM, Dastugue A, Bindels LB, Delzenne NM, et al. A preventive prebiotic supplementation improves the sweet taste perception in diet-induced obese mice. Nutrients. 2019;11:549.

    Article  PubMed Central  CAS  Google Scholar 

  147. Choo E, Wong L, Chau P, Bushnell J, Dando R. Offspring of obese mice display enhanced intake and sensitivity for palatable stimuli, with altered expression of taste signaling elements. Sci Reps Press. 2020;10:1–11.

    Google Scholar 

  148. Liu F, Thirumangalathu S, Gallant NM, Yang SH, Stoick-Cooper CL, Reddy ST, et al. Wnt-β-catenin signaling initiates taste papilla development. Nat Genet. 2007;39:106–12.

    Article  CAS  PubMed  Google Scholar 

  149. Iwatsuki K, Liu HX, Gründer A, Singer MA, Lane TF, Grosschedl R, et al. Wnt signaling interacts with Shh to regulate taste papilla development. Proc Natl Acad Sci U.S.A. 2007;104:2253–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. May CE, Vaziri A, Lin YQ, Grushko O, Khabiri M, Wang QP, et al. High dietary sugar reshapes sweet taste to promote feeding behavior in drosophila melanogaster. Cell Rep. 2019;27:1675–.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Archer N, Shaw J, Cochet-Broch M, Bunch R, Poelman A, Barendse W, et al. Obesity is associated with altered gene expression in human tastebuds. Int J Obes. 2019;43:1475–84.

    Article  CAS  Google Scholar 

  152. Hall JMH, Bell ML, Finger TE. Disruption of Sonic hedgehog signaling alters growth and patterning of lingual taste papillae. Dev Biol. 2003;255:263–77.

    Article  CAS  PubMed  Google Scholar 

  153. Mameli C, Cattaneo C, Panelli S, Comandatore F, Sangiorgio A, Bedogni G, et al. Taste perception and oral microbiota are associated with obesity in children and adolescents. PLoS ONE. 2019;14:e0221656.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Miller IJ, Reedy FE. Quantification of fungiform papillae and taste pores in living human subjects. Chem Senses. 1990;15:281–94.

    Article  Google Scholar 

  155. Johnson PM, Kenny PJ. Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat Neurosci. 2010;13:635–41. https://doi.org/10.1038/nn.2519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Volkow ND, Wang GJ, Baler RD. Reward, dopamine and the control of food intake: implications for obesity. Trends Cogn Sci. 2011;15:37–46.

    Article  CAS  PubMed  Google Scholar 

  157. Weiss MS, Hajnal A, Czaja K, Di Lorenzo PM. Taste responses in the nucleus of the solitary tract of awake obese rats are blunted compared with those in lean rats. Front Integr Neurosci. 2019;13:35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Frank GKW, Reynolds JR, Shott ME, Jappe L, Yang TT, Tregellas JR, et al. Anorexia nervosa and obesity are associated with opposite brain reward response. Neuropsychopharmacology. 2012;37:2031–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Green E, Jacobson A, Haase L, Murphy C. Reduced nucleus accumbens and caudate nucleus activation to a pleasant taste is associated with obesity in older adults. Brain Res. 2011;1386:109–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Hardikar S, Wallroth R, Villringer A, Ohla K. Shorter-lived neural taste representations in obese compared to lean individuals. Sci Rep. 2018;8:1–10.

    Article  CAS  Google Scholar 

  161. Chao DHM, Argmann C, Van Eijk M, Boot RG, Ottenhoff R, Van Roomen C, et al. Impact of obesity on taste receptor expression in extra-oral tissues: Emphasis on hypothalamus and brainstem. Sci Rep. 2016;6:1–14.

    CAS  Google Scholar 

  162. Rohde K, Schamarek I, Blüher M. Consequences of obesity on the sense of taste: taste buds as treatment targets? Diabetes Metab J. 2020;44:509–28.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Goodman J, Dando R. To detect and reject: parallel roles for taste and immunity. Current Nutriton Reports. 2021;10:137–45.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin Dando.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harnischfeger, F., Dando, R. Obesity-induced taste dysfunction, and its implications for dietary intake. Int J Obes 45, 1644–1655 (2021). https://doi.org/10.1038/s41366-021-00855-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-021-00855-w

Search

Quick links