Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epidemiology and Population Health

Obesity and risk of age-related eye diseases: a systematic review of prospective population-based studies

Abstract

Background

Obesity is a public health challenge worldwide. The relationship between obesity and age-related eye diseases including cataract, glaucoma, age-related macular degeneration (AMD) and diabetic retinopathy (DR) have remained elusive.

Design and methods

We conducted a systematic review of three electronic databases for longitudinal population-based studies that described associations between measures of obesity including body mass index (BMI), waist-circumference (WC), and waist-to-hip ratio (WHR), and age-related eye diseases.

Results

Our search yielded 1731 articles, of which 14, 10, 16 and 8 articles met our eligibility criteria for cataract, glaucoma, AMD and DR, respectively. BMI-defined obesity was positively associated with incident cataract, incident AMD and incident DR in Western populations, but in Asian populations associations for incident AMD were not significant and associations for incident DR were inverse. WC-defined obesity was associated with incident glaucoma in non-Western populations. WHR-defined obesity but not BMI-defined obesity was associated with the incidence or progression of AMD in two Western studies.

Conclusions

Overall, we found strong evidence supporting associations between obesity and age-related eye diseases. Further research on the association of abdominal obesity and effect of weight loss and physical activity on age-related eye diseases is warranted to support clinical and public health recommendations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Selection of studies that assessed the prospective association between obesity and age-related eye studies in adults.
Fig. 2: Pathological mechanisms underlying the relationship between obesity and age-related eye diseases.

Similar content being viewed by others

References

  1. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392:1923–94.

  2. Obesity and overweight: World Health Organisation; 2018 [updated 16 February 2018. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight.

  3. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet. 2017;390:2627–42.

  4. Health effects of dietary risks in 195 countries, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2019;393:1958–72.

  5. Bourne RRA, Flaxman SR, Braithwaite T, Cicinelli MV, Das A, Jonas JB, et al. Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis. Lancet Global Health. 2017;5:e888–e97.

    Article  PubMed  Google Scholar 

  6. Flaxman SR, Bourne RRA, Resnikoff S, Ackland P, Braithwaite T, Cicinelli MV, et al. Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis. Lancet Global health. 2017;5:e1221–e34.

    Article  PubMed  Google Scholar 

  7. Access GBDH, Quality C. Measuring performance on the Healthcare Access and Quality Index for 195 countries and territories and selected subnational locations: a systematic analysis from the Global Burden of Disease Study 2016. Lancet. 2018;391:2236–71.

    Article  Google Scholar 

  8. Floud S, Kuper H, Reeves GK, Beral V, Green J. Risk factors for cataracts treated surgically in postmenopausal women. Ophthalmology. 2016;123:1704–10.

    Article  PubMed  Google Scholar 

  9. Howard KP, Klein BE, Lee KE, Klein R. Measures of body shape and adiposity as related to incidence of age-related eye diseases: observations from the Beaver Dam Eye Study. Investig Ophthalmol Visual Sci. 2014;55:2592–8.

    Article  Google Scholar 

  10. Ghaem Maralani H, Tai BC, Wong TY, Tai ES, Li J, Wang JJ, et al. Metabolic syndrome and risk of age-related cataract over time: an analysis of interval-censored data using a random-effects model. Investig Ophthalmol Visual Sci. 2013;54:641–6.

    Article  Google Scholar 

  11. Glynn RJ, Rosner B, Christen WG. Evaluation of risk factors for cataract types in a competing risks framework. Ophthalmic Epidemiol. 2009;16:98–106.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Tan JS, Wang JJ, Mitchell P. Influence of diabetes and cardiovascular disease on the long-term incidence of cataract: the Blue Mountains eye study. Ophthalmic Epidemiol. 2008;15:317–27.

    Article  PubMed  Google Scholar 

  13. Younan C, Mitchell P, Cumming R, Rochtchina E, Panchapakesan J, Tumuluri K. Cardiovascular disease, vascular risk factors and the incidence of cataract and cataract surgery: the Blue Mountains Eye Study. Ophthalmic Epidemiol. 2003;10:227–40.

    Article  PubMed  Google Scholar 

  14. Weintraub JM, Willett WC, Rosner B, Colditz GA, Seddon JM, Hankinson SE. A prospective study of the relationship between body mass index and cataract extraction among US women and men. Int J Obes Relat Metab Disord. 2002;26:1588–95.

    Article  CAS  PubMed  Google Scholar 

  15. Schaumberg DA, Glynn RJ, Christen WG, Hankinson SE, Hennekens CH. Relations of body fat distribution and height with cataract in men. Am J Clin Nutr. 2000;72:1495–502.

    Article  CAS  PubMed  Google Scholar 

  16. Klein BE, Klein R, Lee KE. Diabetes, cardiovascular disease, selected cardiovascular disease risk factors, and the 5-year incidence of age-related cataract and progression of lens opacities: the Beaver Dam Eye Study. Am J Ophthalmol. 1998;126:782–90.

    Article  CAS  PubMed  Google Scholar 

  17. Hiller R, Podgor MJ, Sperduto RD, Nowroozi L, Wilson PW, D’Agostino RB, et al. A longitudinal study of body mass index and lens opacities. The Framingham Studies. Ophthalmology. 1998;105:1244–50.

    Article  CAS  PubMed  Google Scholar 

  18. Glynn RJ, Christen WG, Manson JE, Bernheimer J, Hennekens CH. Body mass index. An independent predictor of cataract. Arch Ophthalmol. 1995;113:1131–7.

    Article  CAS  PubMed  Google Scholar 

  19. Tan AG, Tham YC, Chee ML, Mitchell P, Cumming RG, Sabanayagam C, et al. Incidence, progression and risk factors of age-related cataract in Malays: The Singapore Malay Eye Study. Clin Exp Ophthalmol. 2020.

  20. Kim YK, Choi HJ, Jeoung JW, Park KH, Kim DM. Five-year incidence of primary open-angle glaucoma and rate of progression in health center-based Korean population: the Gangnam Eye Study. PLoS One. 2014;9:e114058.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Jiang X, Varma R, Wu S, Torres M, Azen SP, Francis BA, et al. Baseline risk factors that predict the development of open-angle glaucoma in a population: the Los Angeles Latino Eye Study. Ophthalmology. 2012;119:2245–53.

    Article  PubMed  Google Scholar 

  22. Wise LA, Rosenberg L, Radin RG, Mattox C, Yang EB, Palmer JR, et al. A prospective study of diabetes, lifestyle factors, and glaucoma among African-American women. Ann Epidemiol. 2011;21:430–9.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ghaem Maralani H, Tai BC, Wong TY, Tai ES, Li J, Wang JJ, et al. Metabolic syndrome and risk of age-related macular degeneration. Retina. 2015;35:459–66.

    Article  CAS  PubMed  Google Scholar 

  24. Jonasson F, Fisher DE, Eiriksdottir G, Sigurdsson S, Klein R, Launer LJ, et al. Five-year incidence, progression, and risk factors for age-related macular degeneration: the age, gene/environment susceptibility study. Ophthalmology. 2014;121:1766–72.

    Article  PubMed  Google Scholar 

  25. Adams MK, Simpson JA, Aung KZ, Makeyeva GA, Giles GG, English DR, et al. Abdominal obesity and age-related macular degeneration. Am J Epidemiol. 2011;173:1246–55.

    Article  PubMed  Google Scholar 

  26. Peeters A, Magliano DJ, Stevens J, Duncan BB, Klein R, Wong TY. Changes in abdominal obesity and age-related macular degeneration: the Atherosclerosis Risk in Communities Study. Arch Ophthalmol. 2008;126:1554–60.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Klein R, Deng Y, Klein BE, Hyman L, Seddon J, Frank RN, et al. Cardiovascular disease, its risk factors and treatment, and age-related macular degeneration: Women’s Health Initiative Sight Exam ancillary study. Am J Ophthalmol. 2007;143:473–83.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Schaumberg DA, Christen WG, Hankinson SE, Glynn RJ. Body mass index and the incidence of visually significant age-related maculopathy in men. Arch Ophthalmol. 2001;119:1259–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gray N, Picone G, Sloan F, Yashkin A. Relation between BMI and diabetes mellitus and its complications among US older adults. Southern Med J. 2015;108:29–36.

    Article  PubMed  Google Scholar 

  30. Hammes HP, Welp R, Kempe HP, Wagner C, Siegel E, Holl RW, et al. Risk factors for retinopathy and DME in type 2 diabetes-results from the German/Austrian DPV database. PLoS ONE. 2015;10:e0132492.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Klein R, Knudtson MD, Lee KE, Gangnon R, Klein BE. The Wisconsin Epidemiologic Study of Diabetic Retinopathy: XXII the twenty-five-year progression of retinopathy in persons with type 1 diabetes. Ophthalmology. 2008;115:1859–68.

    Article  PubMed  Google Scholar 

  32. Xu J, Xu L, Wang YX, You QS, Jonas JB, Wei WB. Ten-year cumulative incidence of diabetic retinopathy. The Beijing Eye Study 2001/2011. PloS One. 2014;9:e111320.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Leske MC, Wu SY, Nemesure B, Hennis A, Barbados Eye Studies G. Risk factors for incident nuclear opacities. Ophthalmology. 2002;109:1303–8.

    Article  PubMed  Google Scholar 

  34. Springelkamp H, Wolfs RC, Ramdas WD, Hofman A, Vingerling JR, Klaver CC, et al. Incidence of glaucomatous visual field loss after two decades of follow-up: the Rotterdam Study. Eur J Epidemiol. 2017;32:691–9.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ramdas WD, Wolfs RC, Hofman A, de Jong PT, Vingerling JR, Jansonius NM. Lifestyle and risk of developing open-angle glaucoma: the Rotterdam study. Arch Ophthalmol. 2011;129:767–72.

    Article  PubMed  Google Scholar 

  36. Pasquale LR, Willett WC, Rosner BA, Kang JH. Anthropometric measures and their relation to incident primary open-angle glaucoma. Ophthalmology. 2010;117:1521–9.

    Article  PubMed  Google Scholar 

  37. Chan JCY, Chee ML, Tan NYQ, Cheng CY, Wong TY, Sabanayagam C. Differential effect of body mass index on the incidence of diabetes and diabetic retinopathy in two Asian populations. Nutr Diabetes. 2018;8:16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Sunita M, Singh AK, Rogye A, Sonawane M, Gaonkar R, Srinivasan R, et al. Prevalence of diabetic retinopathy in urban slums: The Aditya Jyot Diabetic Retinopathy in Urban Mumbai Slums Study-Report 2. Ophthal Epidemiol. 2017;24:303–10.

    Article  Google Scholar 

  39. Garberg G, Lovestam-Adrian M, Nasic S, Bostrom KB. The prognosis of diabetic retinopathy in patients with type 2 diabetes since 1996-1998: the Skaraborg Diabetes Register. Int Ophthalmol. 2015;35:503–11.

    Article  PubMed  Google Scholar 

  40. Lindblad BE, Hakansson N, Philipson B, Wolk A. Metabolic syndrome components in relation to risk of cataract extraction: a prospective cohort study of women. Ophthalmology. 2008;115:1687–92.

    Article  PubMed  Google Scholar 

  41. You QS, Xu L, Yang H, Li YB, Wang S, Wang JD, et al. Five-year incidence of age-related macular degeneration: the Beijing Eye Study. Ophthalmology. 2012;119:2519–25.

    Article  PubMed  Google Scholar 

  42. Mares JA, Voland RP, Sondel SA, Millen AE, Larowe T, Moeller SM, et al. Healthy lifestyles related to subsequent prevalence of age-related macular degeneration. Arch Ophthalmo. 2011;129:470–80.

    Article  Google Scholar 

  43. Tan JS, Mitchell P, Smith W, Wang JJ. Cardiovascular risk factors and the long-term incidence of age-related macular degeneration: the Blue Mountains Eye Study. Ophthalmology. 2007;114:1143–50.

    Article  PubMed  Google Scholar 

  44. Miyazaki M, Kiyohara Y, Yoshida A, Iida M, Nose Y, Ishibashi T. The 5-year incidence and risk factors for age-related maculopathy in a general Japanese population: the Hisayama study. Investig Ophthalmol Visual Sci. 2005;46:1907–10.

    Article  Google Scholar 

  45. Tomany SC, Wang JJ, Van Leeuwen R, Klein R, Mitchell P, Vingerling JR, et al. Risk factors for incident age-related macular degeneration: pooled findings from 3 continents. Ophthalmology. 2004;111:1280–7.

    Article  PubMed  Google Scholar 

  46. Klein R, Klein BE, Tomany SC, Cruickshanks KJ. The association of cardiovascular disease with the long-term incidence of age-related maculopathy: the Beaver Dam eye study. Ophthalmology. 2003;110:636–43.

    Article  PubMed  Google Scholar 

  47. Smith W, Assink J, Klein R, Mitchell P, Klaver CC, Klein BE, et al. Risk factors for age-related macular degeneration: pooled findings from three continents. Ophthalmology. 2001;108:697–704.

    Article  CAS  PubMed  Google Scholar 

  48. Kaushik VP, Al Snih S, Ray LA, Raji MA, Markides KS, Goodwin JS. Factors associated with seven-year incidence of diabetes complications among older Mexican Americans. Gerontology. 2007;53:194–9.

    Article  PubMed  Google Scholar 

  49. Klein R, Klein BE, Moss SE. Is obesity related to microvascular and macrovascular complications in diabetes? The Wisconsin epidemiologic study of diabetic retinopathy. Arch Intern Med. 1997;157:650–6.

    Article  CAS  PubMed  Google Scholar 

  50. Foo VHX, Yanagi Y, Nguyen QD, Sabanayagam C, Lim SH, Neelam K, et al. Six-year incidence and risk factors of age-related macular degeneration in Singaporean Indians: the Singapore Indian Eye Study. Sci Rep. 2018;8:8869.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Cheung CMG, Ong PG, Neelam K, Tan PC, Shi Y, Mitchell P, et al. Six-Year Incidence of Age-Related Macular Degeneration in Asian Malays: The Singapore Malay Eye Study. Ophthalmology. 2017;124:1305–13.

    Article  PubMed  Google Scholar 

  52. Cheung N, Wong TY. Obesity and eye diseases. Surv Ophthalmol. 2007;52:180–95.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet. 2004;363:157–63.

  54. Waist circumference and waist-hip ratio: report of a WHO expert consultation, Geneva, 8–11 December 2008. World Health Organisation. 2011.

  55. Elffers TW, de Mutsert R, Lamb HJ, de Roos A, Willems van Dijk K, Rosendaal FR, et al. Body fat distribution, in particular visceral fat, is associated with cardiometabolic risk factors in obese women. PloS One. 2017;12:e0185403.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151:264–9. w64

    Article  PubMed  Google Scholar 

  57. Szklo M. Population-based cohort studies. Epidemiol Rev. 1998;20:81–90.

    Article  CAS  PubMed  Google Scholar 

  58. Deeks JJ, Dinnes J, D’Amico R, Sowden AJ, Sakarovitch C, Song F, et al. Evaluating non-randomised intervention studies. Health Technol Assess. 2003;7:1–173. iii-x

    Article  Google Scholar 

  59. Han X, Yang T, Zhang J, Yu S, Guo X, Yan W, et al. Longitudinal changes in intraocular pressure and association with systemic factors and refractive error: Lingtou Eye Cohort Study. BMJ Open. 2018;8:e019416.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Yoshida M, Ishikawa M, Karita K, Kokaze A, Harada M, Take S, et al. Association of blood pressure and body mass index with intraocular pressure in middle-aged and older Japanese residents: a cross-sectional and longitudinal study. Acta Med Okayama. 2014;68:27–34.

    PubMed  Google Scholar 

  61. Zhao D, Kim MH, Pastor-Barriuso R, Chang Y, Ryu S, Zhang Y, et al. A longitudinal study of association between adiposity markers and intraocular pressure: the Kangbuk Samsung Health Study. PLoS One. 2016;11:e0146057.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Wang YX, Xu L, Zhang XH, You QS, Zhao L, Jonas JB. Five-year change in intraocular pressure associated with changes in arterial blood pressure and body mass index. The Beijing eye study. PloS One. 2013;8:e77180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Pan CW, Lin Y. Overweight, obesity, and age-related cataract: a meta-analysis. Optom Vision Sci. 2014;91:478–83.

    Article  Google Scholar 

  64. Ye J, Lou LX, He JJ, Xu YF. Body mass index and risk of age-related cataract: a meta-analysis of prospective cohort studies. PloS One. 2014;9:e89923.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Schaumberg DA, Ridker PM, Glynn RJ, Christen WG, Dana MR, Hennekens CH. High levels of plasma C-reactive protein and future risk of age-related cataract. Ann Epidemiol. 1999;9:166–71.

    Article  CAS  PubMed  Google Scholar 

  66. Varma SD, Chand D, Sharma YR, Kuck JF Jr., Richards RD. Oxidative stress on lens and cataract formation: role of light and oxygen. Curr Eye Res. 1984;3:35–57.

    Article  CAS  PubMed  Google Scholar 

  67. Ford ES. Body mass index, diabetes, and C-reactive protein among U.S. adults. Diabetes Care. 1999;22:1971–7.

    Article  CAS  PubMed  Google Scholar 

  68. Cushman M, Yanez D, Psaty BM, Fried LP, Heiss G, Lee M, et al. Association of fibrinogen and coagulation factors VII and VIII with cardiovascular risk factors in the elderly: the Cardiovascular Health Study. Cardiovascular Health Study Investigators. Am J Epidemiol. 1996;143:665–76.

    Article  CAS  PubMed  Google Scholar 

  69. Ritchie SA, Connell JM. The link between abdominal obesity, metabolic syndrome and cardiovascular disease. Nutr Metab Cardiovasc Dis. 2007;17:319–26.

    Article  CAS  PubMed  Google Scholar 

  70. Klein BE, Klein R, Jensen SC, Linton KL. Hypertension and lens opacities from the Beaver Dam Eye Study. Am J Ophthalmol. 1995;119:640–6.

    Article  CAS  PubMed  Google Scholar 

  71. Machan CM, Hrynchak PK, Irving EL. Age-related cataract is associated with type 2 diabetes and statin use. Optom Vis Sci. 2012;89:1165–71.

    Article  PubMed  Google Scholar 

  72. Rowe NG, Mitchell PG, Cumming RG, Wans JJ. Diabetes, fasting blood glucose and age-related cataract: the Blue Mountains Eye Study. Ophthalmic Epidemiol. 2000;7:103–14.

    Article  CAS  PubMed  Google Scholar 

  73. Despres JP, Lemieux I, Bergeron J, Pibarot P, Mathieu P, Larose E, et al. Abdominal obesity and the metabolic syndrome: contribution to global cardiometabolic risk. Arteriosc Thromb Vasc Biol. 2008;28:1039–49.

    Article  CAS  Google Scholar 

  74. Williams PT. Walking and running are associated with similar reductions in cataract risk. Med Sci Sports Exerc. 2013;45:1089–96.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Zheng Selin J, Orsini N, Ejdervik Lindblad B, Wolk A. Long-term physical activity and risk of age-related cataract: a population-based prospective study of male and female cohorts. Ophthalmology. 2015;122:274–80.

    Article  PubMed  Google Scholar 

  76. Jiang H, Wang LN, Liu Y, Li M, Wu M, Yin Y, et al. Physical activity and risk of age-related cataract. Int J Ophthalmol. 2020;13:643–9.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Onaran Z, Konuk O, Oktar SO, Yucel C, Unal M. Intraocular pressure lowering effect of orbital decompression is related to increased venous outflow in Graves orbitopathy. Curr Eye Res. 2014;39:666–72.

    Article  PubMed  Google Scholar 

  78. Colton T, Ederer F. The distribution of intraocular pressures in the general population. Surv Ophthalmol. 1980;25:123–9.

    Article  CAS  PubMed  Google Scholar 

  79. Na KS, Kim JH, Paik JS, Cho WK, Ha M, Park YG, et al. Underweight increases the risk of primary open-angle glaucoma in diabetes patients: a Korean nationwide cohort study. Medicine. 2020;99:e19285.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Berdahl JP, Fleischman D, Zaydlarova J, Stinnett S, Allingham RR, Fautsch MP. Body mass index has a linear relationship with cerebrospinal fluid pressure. Invest Ophthalmol Vis Sci. 2012;53:1422–7.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Lee MJ, Wang J, Friedman DS, Boland MV, De Moraes CG, Ramulu PY. Greater physical activity is associated with slower visual field loss in glaucoma. Ophthalmology. 2019;126:958–64.

    Article  PubMed  Google Scholar 

  82. Lam CT, Trope GE, Buys YM. Effect of Head Position and Weight Loss on Intraocular Pressure in Obese Subjects. Journal of glaucoma. 2017;26:107–12.

    Article  PubMed  Google Scholar 

  83. Wu J, Cho E, Willett WC, Sastry SM, Schaumberg DA. Intakes of lutein, zeaxanthin, and other carotenoids and age-related macular degeneration during 2 decades of prospective follow-up. JAMA Ophthalmol. 2015;133:1415–24.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Lutein + zeaxanthin and omega-3 fatty acids for age-related macular degeneration: the Age-Related Eye Disease Study 2 (AREDS2) randomized clinical trial. JAMA. 2013;309:2005–15.

  85. Maury E, Noel L, Detry R, Brichard SM. In vitro hyperresponsiveness to tumor necrosis factor-alpha contributes to adipokine dysregulation in omental adipocytes of obese subjects. J Clin Endocrinol Metab. 2009;94:1393–400.

    Article  CAS  PubMed  Google Scholar 

  86. Kurokawa J, Arai S, Nakashima K, Nagano H, Nishijima A, Miyata K, et al. Macrophage-derived AIM is endocytosed into adipocytes and decreases lipid droplets via inhibition of fatty acid synthase activity. Cell metabolism. 2010;11:479–92.

    Article  CAS  PubMed  Google Scholar 

  87. Seddon JM, Gensler G, Milton RC, Klein ML, Rifai N. Association between C-reactive protein and age-related macular degeneration. JAMA. 2004;291:704–10.

    Article  CAS  PubMed  Google Scholar 

  88. Hyman L, Schachat AP, He Q, Leske MC. Hypertension, cardiovascular disease, and age-related macular degeneration. Age-Related Macular Degeneration Risk Factors Study Group. Arch Ophthalmol. 2000;118:351–8.

    Article  CAS  PubMed  Google Scholar 

  89. Huang EJ, Wu SH, Lai CH, Kuo CN, Wu PL, Chen CL, et al. Prevalence and risk factors for age-related macular degeneration in the elderly Chinese population in south-western Taiwan: the Puzih eye study. Eye. 2014;28:705–14.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Topouzis F, Anastasopoulos E, Augood C, Bentham GC, Chakravarthy U, de Jong PT, et al. Association of diabetes with age-related macular degeneration in the EUREYE study. Br J Ophthalmol. 2009;93:1037–41.

    Article  CAS  PubMed  Google Scholar 

  91. Choi JK, Lym YL, Moon JW, Shin HJ, Cho B. Diabetes mellitus and early age-related macular degeneration. Arch Ophthalmol. 2011;129:196–9.

    Article  PubMed  Google Scholar 

  92. Seddon JM, Cote J, Davis N, Rosner B. Progression of age-related macular degeneration: association with body mass index, waist circumference, and waist-hip ratio. Arch Ophthalmol. 2003;121:785–92.

    Article  PubMed  Google Scholar 

  93. McGuinness MB, Le J, Mitchell P, Gopinath B, Cerin E, Saksens NTM, et al. Physical activity and age-related macular degeneration: a systematic literature review and meta-analysis. Am J Ophthalmol. 2017;180:29–38.

    Article  PubMed  Google Scholar 

  94. Cheng R, Ma JX. Angiogenesis in diabetes and obesity. Rev Endocr Metab Disord. 2015;16:67–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mbata O, Abo El-Magd NF, El-Remessy AB. Obesity, metabolic syndrome and diabetic retinopathy: beyond hyperglycemia. World J Diabetes. 2017;8:317–29.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Fuentes E, Fuentes F, Vilahur G, Badimon L, Palomo I. Mechanisms of chronic state of inflammation as mediators that link obese adipose tissue and metabolic syndrome. Mediat Inflamm. 2013;2013:136584.

    Article  CAS  Google Scholar 

  97. Wat N, Wong RL, Wong IY. Associations between diabetic retinopathy and systemic risk factors. Hong Kong Med J. 2016;22:589–99.

    CAS  PubMed  Google Scholar 

  98. Misra A, Kumar S, Kishore Vikram N, Kumar A. The role of lipids in the development of diabetic microvascular complications: implications for therapy. Am J Cardiovasc Drugs. 2003;3:325–38.

    Article  CAS  PubMed  Google Scholar 

  99. Gupta D, Krueger CB, Lastra G. Over-nutrition, obesity and insulin resistance in the development of beta-cell dysfunction. Curr Diabetes Rev. 2012;8:76–83.

    Article  CAS  PubMed  Google Scholar 

  100. Tapp RJ, Shaw JE, Harper CA, de Courten MP, Balkau B, McCarty DJ, et al. The prevalence of and factors associated with diabetic retinopathy in the Australian population. Diabetes Care. 2003;26:1731–7.

    Article  PubMed  Google Scholar 

  101. Ades PA, Savage PD. The obesity paradox: perception vs knowledge. Mayo Clin Proc. 2010;85:112–4.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Oreopoulos A, Padwal R, Kalantar-Zadeh K, Fonarow GC, Norris CM, McAlister FA. Body mass index and mortality in heart failure: a meta-analysis. Am Heart J. 2008;156:13–22.

    Article  PubMed  Google Scholar 

  103. Romero-Corral A, Montori VM, Somers VK, Korinek J, Thomas RJ, Allison TG, et al. Association of bodyweight with total mortality and with cardiovascular events in coronary artery disease: a systematic review of cohort studies. Lancet. 2006;368:666–78.

    Article  PubMed  Google Scholar 

  104. Schmidt D, Salahudeen A. The obesity-survival paradox in hemodialysis patients: why do overweight hemodialysis patients live longer? Nutr Clin Pract. 2007;22:11–5.

    Article  PubMed  Google Scholar 

  105. Khalangot M, Tronko M, Kravchenko V, Kulchinska J, Hu G. Body mass index and the risk of total and cardiovascular mortality among patients with type 2 diabetes: a large prospective study in Ukraine. Heart. 2009;95:454–60.

    Article  CAS  PubMed  Google Scholar 

  106. Ahlqvist E, Storm P, Käräjämäki A, Martinell M, Dorkhan M, Carlsson A, et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 2018;6:361–9.

    Article  PubMed  Google Scholar 

  107. Man RE, Sabanayagam C, Chiang PP, Li LJ, Noonan JE, Wang JJ, et al. Differential association of generalized and abdominal obesity with diabetic retinopathy in Asian patients with type 2 diabetes. JAMA Ophthalmol. 2016;134:251–7.

    Article  PubMed  CAS  Google Scholar 

  108. Wong TY, Klein R, Islam FM, Cotch MF, Folsom AR, Klein BE, et al. Diabetic retinopathy in a multi-ethnic cohort in the United States. Am J Ophthalmol. 2006;141:446–55.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Hwang IC, Bae JH, Kim JM. Relationship between body fat and diabetic retinopathy in patients with type 2 diabetes: a nationwide survey in Korea. Eye. 2019;33:980–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Klein R, Klein BE. Body fat distribution and diabetic retinopathy in people with type 2 diabetes. JAMA. 2016;315:1778–9.

    Article  CAS  PubMed  Google Scholar 

  111. Khavandi K, Amer H, Ibrahim B, Brownrigg J. Strategies for preventing type 2 diabetes: an update for clinicians. Ther Adv Chronic Dis. 2013;4:242–61.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Sheard NF. Moderate changes in weight and physical activity can prevent or delay the development of type 2 diabetes mellitus in susceptible individuals. Nutr Rev. 2003;61:76–9.

    Article  PubMed  Google Scholar 

  113. Ren C, Liu W, Li J, Cao Y, Xu J, Lu P. Physical activity and risk of diabetic retinopathy: a systematic review and meta-analysis. Acta Diabetol. 2019;56:823–37.

    Article  PubMed  Google Scholar 

  114. Jin P, Peng J, Zou H, Wang W, Fu J, Shen B, et al. The 5-year onset and regression of diabetic retinopathy in Chinese type 2 diabetes patients. PloS One. 2014;9:e113359.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Williamson DF, Thompson TJ, Thun M, Flanders D, Pamuk E, Byers T. Intentional weight loss and mortality among overweight individuals with diabetes. Diabetes Care. 2000;23:1499–504.

    Article  CAS  PubMed  Google Scholar 

  116. Weil E, Wachterman M, McCarthy EP, Davis RB, O’Day B, Iezzoni LI, et al. Obesity among adults with disabling conditions. JAMA. 2002;288:1265–8.

    Article  PubMed  Google Scholar 

  117. Yang F, Yang C, Liu Y, Peng S, Liu B, Gao X, et al. Associations between body mass index and visual impairment of school students in Central China. Int J Environ Res Public Health. 2016;13.

  118. Magdalena W, Urzedowicz B, Motylewski S, Zeman K, Pawlicki L. Body mass index and waist-to-height ratio among schoolchildren with visual impairment: a cross-sectional study. Medicine. 2016;95:e4397.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Klein R, Klein BEK, Moss SE. Is obesity related to microvascular and macrovascular complications in diabetes? The Wisconsin Epidemiologic Study of Diabetic Retinopathy. Arch Intern Med. 1997;157:650–6.

    Article  CAS  PubMed  Google Scholar 

  120. Ashwell M, Hsieh SD. Six reasons why the waist-to-height ratio is a rapid and effective global indicator for health risks of obesity and how its use could simplify the international public health message on obesity. Int J Food Sci Nutr. 2005;56:303–7.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by funding from Singapore Health Services under the Medical Student Talent Development Award. The authors also appreciate the support of Duke-NUS/SingHealth Academic Medicine Research Institute. We thank Miss. Riswana Banu Binte Mohamed Abdul, Singapore Eye Research Institute, Singapore for her help with the formatting of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charumathi Sabanayagam.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ng Yin Ling, C., Lim, S.C., Jonas, J.B. et al. Obesity and risk of age-related eye diseases: a systematic review of prospective population-based studies. Int J Obes 45, 1863–1885 (2021). https://doi.org/10.1038/s41366-021-00829-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-021-00829-y

This article is cited by

Search

Quick links