Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Physiology and Biochemistry

Lampaya Medicinalis Phil. decreases lipid-induced triglyceride accumulation and proinflammatory markers in human hepatocytes and fat body of Drosophila melanogaster

Abstract

Background

Excess hepatic triglyceride (TG) accumulation (steatosis) commonly observed in obesity, may lead to non-alcoholic fatty liver disease (NAFLD). Altered regulation of intracellular lipid droplets (LD) and TG metabolism, as well as activation of JNK-mediated proinflammatory pathways may trigger liver steatosis-related disorders. Drosophila melanogaster is an animal model used for studying obesity and its associated disorders. In Drosophila, lipids and glycogen are stored in the fat body (FB), which resembles mammalian adipose tissue and liver. Dietary oversupply leads to obesity-related disorders, which are characterized by FB dysfunction. Infusions of Lampaya medicinalis Phil. (Verbenaceae) are used in folk medicine of Chile to counteract inflammatory diseases. Hydroethanolic extract of lampaya (HEL) contains considerable amounts of flavonoids that may explain its anti-inflammatory effect.

Methods

We studied whether HEL affects palmitic acid (PA, C16:0) and oleic acid (OA; C18:1)-induced TG accumulation and proinflammatory marker content in HepG2 hepatocytes as well as impaired lipid storage and proinflammatory molecule expression in Drosophila melanogaster fed a high-fat diet (HFD).

Results

In HepG2 hepatocytes, exposure to OA/PA elevated TG content, FABP4, ATGL and DGAT2 expression, and the JNK proinflammatory pathway, as well as TNF-α and IL-6 production, while diminished FAS expression. These effects were prevented by HEL co-treatment. In Drosophila larvae fed a HFD, HEL prevented TG accumulation and downregulated proinflammatory JNK pathway activation.

Conclusion

HEL effect counteracting OA/PA- and HFD-induced lipid accumulation and proinflammatory marker expression in HepG2 hepatocytes and Drosophila larvae may represent a preventive approach against hepatic steatosis and inflammation, associated to obesity and NAFLD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: HEL does not affect cell viability and ameliorates triglyceride content induced by OA/PA in HepG2 hepatocytes.
Fig. 2: Co-incubation with HEL prevents OA/PA-induced FABP4 expression and counteracts altered ATGL expression in HepG2 hepatocytes.
Fig. 3: HEL restores OA/PA-altered expression of lipogenic enzymes in HepG2 hepatocytes.
Fig. 4: Co-incubation with HEL prevents OA/PA-induced JNK phosphorylation and proinflammatory cytokine upregulation in HepG2 hepatocytes.
Fig. 5: HEL ameliorates triglyceride content induced by high-fat diet in fat body cells.
Fig. 6: HEL counteracts the effect of HFD on proinflammatory marker expression.

Similar content being viewed by others

References

  1. Engin A. Non-alcoholic fatty liver disease. Adv Exp Med Biol. vol. 960, Springer New York LLC; 2017, p. 443–67. https://doi.org/10.1007/978-3-319-48382-5_19

  2. Yao HR, Liu J, Plumeri D, Cao YB, He T, Lin L, et al. Lipotoxicity in HepG2 cells triggered by free fatty acids. Am J Transl Res. 2011;3:284–91

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Thompson KJ, Austin RG, Nazari SS, Gersin KS, Iannitti DA, McKillop IH. Altered fatty acid-binding protein 4 (FABP4) expression and function in human and animal models of hepatocellular carcinoma. Liver Int. 2018;38:1074–83. https://doi.org/10.1111/liv.13639

    Article  CAS  PubMed  Google Scholar 

  4. Milner KL, van der Poorten D, Xu A, Bugianesi E, Kench JG, Lam KSL, et al. Adipocyte fatty acid binding protein levels relate to inflammation and fibrosis in nonalcoholic fatty liver disease. Hepatology. 2009;49:1926–34. https://doi.org/10.1002/hep.22896

    Article  CAS  PubMed  Google Scholar 

  5. Hoo RLC, Lee IPC, Zhou M, Wong JYL, Hui X, Xu A, et al. Pharmacological inhibition of adipocyte fatty acid binding protein alleviates both acute liver injury and non-alcoholic steatohepatitis in mice. J Hepatol. 2013;58:358–64. https://doi.org/10.1016/j.jhep.2012.10.022

    Article  CAS  PubMed  Google Scholar 

  6. Liu Y, Millar JS, Cromley DA, Graham M, Crooke R, Billheimer JT, et al. Knockdown of Acyl-CoA: diacylglycerol acyltransferase 2 with antisense oligonucleotide reduces VLDL TG and ApoB secretion in mice. Biochim Biophys Acta—Mol Cell Biol Lipids. 2008;1781:97–104. https://doi.org/10.1016/j.bbalip.2008.01.001

    Article  CAS  Google Scholar 

  7. Yen CLE, Stone SJ, Koliwad S, Harris C, Farese RV. DGAT enzymes and triacylglycerol biosynthesis. J Lipid Res. 2008;49:2283–301. https://doi.org/10.1194/jlr.R800018-JLR200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Palou M, Priego T, Sánchez J, Villegas E, Rodríguez AM, Palou A, et al. Sequential changes in the expression of genes involved in lipid metabolism in adipose tissue and liver in response to fasting. Pflugers Arch Eur J Physiol. 2008;456:825–36. https://doi.org/10.1007/s00424-008-0461-1

    Article  CAS  Google Scholar 

  9. Zimmermann R, Strauss JG, Haemmerle G, Schoiswohl G, Birner-Gruenberger R, Riederer M, et al. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science (80-). 2004;306:1383–6. https://doi.org/10.1126/science.1100747

    Article  CAS  Google Scholar 

  10. Reid BN, Ables GP, Otlivanchik OA, Schoiswohl G, Zechner R, Blaner WS, et al. Hepatic overexpression of hormone-sensitive lipase and adipose triglyceride lipase promotes fatty acid oxidation, stimulates direct release of free fatty acids, and ameliorates steatosis. J Biol Chem. 2008;283:13087–99. https://doi.org/10.1074/jbc.M800533200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schattenberg JM, Singh R, Wang Y, Lefkowitch JH, Rigoli RM, Scherer PE, et al. JNK1 but not JNK2 promotes the development of steatohepatitis in mice. Hepatology. 2006;43:163–72. https://doi.org/10.1002/hep.20999

    Article  CAS  PubMed  Google Scholar 

  12. Luedde T, Schwabe RF. NF-κB in the liver-linking injury, fibrosis and hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2011;8:108–18. https://doi.org/10.1038/nrgastro.2010.213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nanji AA, Jokelainen K, Rahemtulla A, Miao L, Fogt F, Matsumoto H, et al. Activation of nuclear factor kappa B and cytokine imbalance in experimental alcoholic liver disease in the rat. Hepatology. 1999;30:934–43. https://doi.org/10.1002/hep.510300402

    Article  CAS  PubMed  Google Scholar 

  14. Luedde T, Beraza N, Trautwein C. Evaluation of the role of nuclear factor-κB signaling in liver injury using genetic animal models. J Gastroenterol Hepatol., vol. 21, Blackwell Publishing; 2006. https://doi.org/10.1111/j.1440-1746.2006.04588.x

  15. Xiang M, Wang PX, Wang AB, Zhang XJ, Zhang Y, Zhang P, et al. Targeting hepatic TRAF1-ASK1 signaling to improve inflammation, insulin resistance, and hepatic steatosis. J Hepatol. 2016;64:1365–77. https://doi.org/10.1016/j.jhep.2016.02.002

    Article  CAS  PubMed  Google Scholar 

  16. Hotamisligil GS. Inflammation, metaflammation and immunometabolic disorders. Nature. 2017;542:177–85. https://doi.org/10.1038/nature21363

    Article  CAS  PubMed  Google Scholar 

  17. Ertunc ME, Hotamisligil GS. Lipid signaling and lipotoxicity in metaflammation: Indications for metabolic disease pathogenesis and treatment. J Lipid Res. 2016;;57:2099–114. https://doi.org/10.1194/jlr.R066514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Boyd O, Weng P, Sun X, Alberico T, Laslo M, Obenland DM, et al. Nectarine promotes longevity in Drosophila melanogaster. Free Radic Biol Med. 2011;50:1669–78. https://doi.org/10.1016/j.freeradbiomed.2011.03.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schriner SE, Lee K, Truong S, Salvadora KT, Maler S, Nam A, et al. Extension of Drosophila lifespan by rhodiola rosea through a mechanism independent from dietary restriction. PLoS ONE. 2013;8. https://doi.org/10.1371/journal.pone.0063886

  20. Peng C, Chan HYE, Li YM, Huang Y, Chen ZY. Black tea theaflavins extend the lifespan of fruit flies. Exp Gerontol. 2009;44:773–83. https://doi.org/10.1016/j.exger.2009.09.004

    Article  CAS  PubMed  Google Scholar 

  21. Duavy SM, Ecker A, Salazar GT, Loreto J, Da CostaJGM, Vargas Barbosa N. Pequi enriched diets protect Drosophila melanogaster against paraquat-induced locomotor deficits and oxidative stress. J Toxicol Environ Heal—Part A Curr Issues. 2019;82:664–77. https://doi.org/10.1080/15287394.2019.1642277

    Article  CAS  Google Scholar 

  22. Srivastav S, Fatima M, Mondal AC. Bacopa monnieri alleviates paraquat induced toxicity in Drosophila by inhibiting jnk mediated apoptosis through improved mitochondrial function and redox stabilization. Neurochem Int. 2018;121:98–107. https://doi.org/10.1016/j.neuint.2018.10.001

    Article  CAS  PubMed  Google Scholar 

  23. Shih J, Hodge R, Andrade-Navarro MA. Comparison of inter- and intraspecies variation in humans and fruit flies. Genomics Data. 2015;3:49–54. https://doi.org/10.1016/j.gdata.2014.11.010

    Article  PubMed  Google Scholar 

  24. Perrimon N, Pitsouli C, Shilo BZ. Signaling mechanisms controlling cell fate and embryonic patterning. Cold Spring Harb Perspect Biol. 2012;4. https://doi.org/10.1101/cshperspect.a005975

  25. Yamada T, Habara O, Kubo H, Nishimura T. Fat body glycogen serves as a metabolic safeguard for the maintenance of sugar levels in Drosophila. Development. 2018;145:dev158865 https://doi.org/10.1242/dev.158865

    Article  CAS  PubMed  Google Scholar 

  26. Gáliková M, Klepsatel P. Obesity and aging in the Drosophila model. Int J Mol Sci. 2018;19. https://doi.org/10.3390/ijms19071896

  27. Heier C, Kühnlein RP. Triacylglycerol metabolism in drosophila melanogaster. Genetics. 2018;210:1163–84. https://doi.org/10.1534/genetics.118.301583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wat LW, Chao C, Bartlett R, Buchanan JL, Millington JW, Chih HJ, et al. A role for triglyceride lipase brummer in the regulation of sex differences in Drosophila fat storage and breakdown. PLoS Biol. 2020;18. https://doi.org/10.1371/journal.pbio.3000595

  29. Smith WW, Thomas J, Liu J, Li T, Moran TH. From fat fruit fly to human obesity. Physiol Behav. 2014;136:15–21. https://doi.org/10.1016/j.physbeh.2014.01.017

    Article  CAS  PubMed  Google Scholar 

  30. Alfa RW, Kim SK. Using Drosophila to discover mechanisms underlying type 2 diabetes. DMM Dis Model Mech. 2016;9:365–76. https://doi.org/10.1242/dmm.023887

    Article  CAS  PubMed  Google Scholar 

  31. Toprak U. The role of peptide hormones in insect lipid metabolism. Front Physiol. 2020;11. https://doi.org/10.3389/fphys.2020.00434

  32. Woodcock KJ, Kierdorf K, Pouchelon CA, Vivancos V, Dionne MS, Geissmann F. Macrophage-derived upd3 cytokine causes impaired glucose homeostasis and reduced lifespan in Drosophila fed a lipid-rich diet. Immunity. 2015;42:133–44. https://doi.org/10.1016/j.immuni.2014.12.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Agrawal N, Delanoue R, Mauri A, Basco D, Pasco M, Thorens B, et al. The Drosophila TNF eiger is an adipokine that acts on insulin-producing cells to mediate nutrient response. Cell Metab. 2016;23:675–84. https://doi.org/10.1016/j.cmet.2016.03.003

    Article  CAS  PubMed  Google Scholar 

  34. Morales G, Paredes A, Olivares A, Bravo J. Acute oral toxicity and anti-inflammatory activity of hydroalcoholic extract from Lampaya medicinalis phil in rats. Biol Res. 2014;47. https://doi.org/10.1186/0717-6287-47-6

  35. Morales G, Paredes A. Antioxidant activities of Lampaya medicinalis extracts and their main chemical constituents. BMC Complement Altern Med. 2014;14. https://doi.org/10.1186/1472-6882-14-259

  36. Mellado V, Medina E, San Martin C. Herbolaria Medica de Chile Ministerio de Salud Santiago de Chile, 1997, p. 168–9

  37. Castro V. Botánica y Pueblos Originarios. Actas 2° Congr. Plantas Med., 1995, p. 49–65

  38. Monterrey N Hierbas medicinales andinas de la 2a Región, 1994, p. 33–35

  39. Gomez, D, Ahumada, J, Necul E. Medicina tradicional atacameña, 1997, p. 61–74

  40. Ormazabal P, Cifuentes M, Varì R, Scazzocchio B, Masella R, Pacheco I, et al. Hydroethanolic extract of Lampaya Medicinalis Phil. (verbenaceae) decreases proinflammatory marker expression in palmitic acid-exposed macrophages. Endocr Metab Immune Disord—Drug Targets. 2020;20. https://doi.org/10.2174/1871530320666200513082300

  41. López-Terrada D, Cheung SW, Finegold MJ, Knowles BB. Hep G2 is a hepatoblastoma-derived cell line. Hum Pathol. 2009;40:1512–5. https://doi.org/10.1016/j.humpath.2009.07.003

    Article  CAS  PubMed  Google Scholar 

  42. Musselman LP, Fink JL, Narzinski K, Ramachandran PV, Hathiramani SS, Cagan RL, et al. A high-sugar diet produces obesity and insulin resistance in wild-type Drosophila. DMM Dis Model Mech. 2011;4:842–9. https://doi.org/10.1242/dmm.007948

    Article  CAS  PubMed  Google Scholar 

  43. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. vol. 29. 2001

  44. Gómez-Lechón MJ, Donato MT, Martínez-Romero A, Jiménez N, Castell JV, O’Connor JE. A human hepatocellular in vitro model to investigate steatosis. Chem Biol Interact. 2007;165:106–16. https://doi.org/10.1016/j.cbi.2006.11.004

    Article  CAS  PubMed  Google Scholar 

  45. Lee MR, Park K Il, Ma JY. Leonurus japonicus houtt attenuates nonalcoholic fatty liver disease in free fatty acid-induced HepG2 cells and mice fed a high-fat diet. Nutrients. 2018;10. https://doi.org/10.3390/nu10010020

  46. Lee MR, Yang HJ, Il ParkK, Ma JY. Lycopus lucidus Turcz. ex Benth. Attenuates free fatty acid-induced steatosis in HepG2 cells and non-alcoholic fatty liver disease in high-fat diet-induced obese mice. Phytomedicine. 2019;55:14–22. https://doi.org/10.1016/j.phymed.2018.07.008

    Article  CAS  PubMed  Google Scholar 

  47. Musselman LP, Fink JL, Ramachandran PV, Patterson BW, Okunade AL, Maier E, et al. Role of fat body lipogenesis in protection against the effects of caloric overload in drosophila. J Biol Chem. 2013;288:8028–42. https://doi.org/10.1074/jbc.M112.371047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kühnlein RP. Thematic review series: Lipid droplet synthesis and metabolism: from Yeast to man. Lipid droplet-based storage fat metabolism in Drosophila. J Lipid Res. 2012;53:1430–6. https://doi.org/10.1194/jlr.R024299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wree A, Broderick L, Canbay A, Hoffman HM, Feldstein AE. From NAFLD to NASH to cirrhosis-new insights into disease mechanisms. Nat Rev Gastroenterol Hepatol. 2013;10:627–36. https://doi.org/10.1038/nrgastro.2013.149

    Article  CAS  PubMed  Google Scholar 

  50. Chen X, Li L, Liu X, Luo R, Liao G, Li L, et al. Oleic acid protects saturated fatty acid mediated lipotoxicity in hepatocytes and rat of non-alcoholic steatohepatitis. Life Sci. 2018;203:291–304. https://doi.org/10.1016/j.lfs.2018.04.022

    Article  CAS  PubMed  Google Scholar 

  51. Seo MS, Hong SW, Yeon SH, Kim YM, Um KA, Kim JH, et al. Magnolia officinalis attenuates free fatty acid-induced lipogenesis via AMPK phosphorylation in hepatocytes. J Ethnopharmacol. 2014;157:140–8. https://doi.org/10.1016/j.jep.2014.09.031

    Article  CAS  PubMed  Google Scholar 

  52. Tsai PJ, Chang ML, Hsin CM, Chuang CC, Chuang LT, Wu WH. Antilipotoxicity activity of osmanthus fragrans and chrysanthemum morifolium flower extracts in hepatocytes and renal glomerular mesangial cells. Mediators Inflamm. 2017;2017:4856095. https://doi.org/10.1155/2017/4856095

  53. Han CW, Kang ES, Ham SA, Woo HJ, Lee JH, Seo HG. Antioxidative effects of Alisma orientale extract in palmitate-induced cellular injury. Pharm Biol. 2012;50:1281–8. https://doi.org/10.3109/13880209.2012.673629

    Article  PubMed  Google Scholar 

  54. Tardelli M, Bruschi FV, Trauner M. The role of metabolic lipases in the pathogenesis and management of liver disease. Hepatology. 2020. https://doi.org/10.1002/hep.31250

    Article  PubMed  Google Scholar 

  55. Dou HX, Wang T, Su HX, Gao DD, Xu YC, Li YX, et al. Exogenous FABP4 interferes with differentiation, promotes lipolysis and inflammation in adipocytes. Endocrine. 2020;67:587–96. https://doi.org/10.1007/s12020-019-02157-8

    Article  CAS  PubMed  Google Scholar 

  56. Hotamisligil GS, Bernlohr DA. Metabolic functions of FABPs—mechanisms and therapeutic implications. Nat Rev Endocrinol. 2015;11:592–605. https://doi.org/10.1038/nrendo.2015.122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jeong H, Kim JWH, Yang MS, Park C, Kim JWH, Lim CW, et al. Beneficial effects of Korean Red Ginseng in the progression of non-alcoholic steatohepatitis via FABP4 modulation. Am J Chin Med. 2018;46:1581–607. https://doi.org/10.1142/S0192415X18500817

    Article  CAS  Google Scholar 

  58. Tzeng TF, Liou SS, Chang CJ, Liu IM. 6-gingerol protects against nutritional Steatohepatitis by regulating key genes related to inflammation and lipid metabolism. Nutrients. 2015;7:999–1020. https://doi.org/10.3390/nu7020999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jang E, Shin MH, Kim KS, Kim YY, Na YC, Woo HJ, et al. Anti-lipoapoptotic effect of Artemisia capillaris extract on free fatty acids-induced HepG2 cells. BMC Complement Altern Med. 2014;14. https://doi.org/10.1186/1472-6882-14-253

  60. Jeong HS, Cho YH, Kim KH, Kim Y, Kim KS, Na YC, et al. Anti-lipoapoptotic effects of Alisma orientalis extract on non-esterified fatty acid-induced HepG2 cells. BMC Complement Altern Med. 2016;16. https://doi.org/10.1186/s12906-016-1181-2

  61. Rafiei H, Omidian K, Bandy B. Comparison of dietary polyphenols for protection against molecular mechanisms underlying nonalcoholic fatty liver disease in a cell model of steatosis. Mol Nutr Food Res. 2017;61. https://doi.org/10.1002/mnfr.201600781

  62. Canavoso LE, Jouni ZE, Karnas KJ, Pennington JE, Wells MA. Fat metabolism in insects. Annu Rev Nutr. 2001;21:23–46

    Article  CAS  Google Scholar 

  63. Kühnlein RP. The contribution of the Drosophila model to lipid droplet research. Prog Lipid Res. 2011;50:348–56. https://doi.org/10.1016/j.plipres.2011.04.001

    Article  CAS  PubMed  Google Scholar 

  64. Birse RT, Choi J, Reardon K, Rodriguez J, Graham S, Diop S, et al. High-fat-diet-induced obesity and heart dysfunction are regulated by the TOR pathway in Drosophila. Cell Metab. 2010;12:533–44. https://doi.org/10.1016/j.cmet.2010.09.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jiang H, Patel PH, Kohlmaier A, Grenley MO, McEwen DG, Edgar BA. Cytokine/Jak/Stat signaling mediates regeneration and homeostasis in the Drosophila midgut. Cell. 2009;137:1343–55. https://doi.org/10.1016/j.cell.2009.05.014

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Prof Dr. Roberto Rodriguez, Universidad de Concepción, Chile for authentication of the plant material. We thank Cecilia Fuentes from OMEGA Laboratory of the Institute of Nutrition and Food Technology for her technical assistance.

Funding

This work was supported by funding from SOCHED (N°2018–03) and SOCHINUT (N° 301) to PO, PAI77170001 to NT, Fondecyt 1150651 to MC, Network for Extreme Environments Research project, Universidad de Antofagasta (NEXER; Project ANT1756) to GM and AP.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, PO; methodology, PO, SS, RV, BS, KH, MC, NT, AP, and GM; investigation, SS, RV, BS, KH, DQ, NT, and AP; formal analysis, PO, NT, and MC; resources, PO, MC, NT, RM, AP, and GM; writing—original draft preparation, PO, SS, and NT; writing—review and editing, MC, RM, and PO; supervision, PO.

Corresponding author

Correspondence to Paulina Ormazabal.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanhueza, S., Tobar, N., Cifuentes, M. et al. Lampaya Medicinalis Phil. decreases lipid-induced triglyceride accumulation and proinflammatory markers in human hepatocytes and fat body of Drosophila melanogaster. Int J Obes 45, 1464–1475 (2021). https://doi.org/10.1038/s41366-021-00811-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-021-00811-8

Search

Quick links