Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Physiology and Biochemistry

Dietary switch to Western diet induces hypothalamic adaptation associated with gut microbiota dysbiosis in rats

Abstract

Background

Early hyperphagia and hypothalamic inflammation encountered after Western diet (WD) are linked to rodent propensity to obesity. Inflammation in several brain structures has been associated with gut dysbiosis. Since gut microbiota is highly sensitive to dietary changes, we hypothesised that immediate gut microbiota adaptation to WD in rats is involved in inflammation-related hypothalamic modifications.

Methods

We evaluated short-term impact of WD consumption (2 h, 1, 2 and 4 days) on hypothalamic metabolome and caecal microbiota composition and metabolome. Data integration analyses were performed to uncover potential relationships among these three datasets. Finally, changes in hypothalamic gene expression in absence of gut microbiota were evaluated in germ-free rats fed WD for 2 days.

Results

WD quickly and profoundly affected the levels of several hypothalamic metabolites, especially oxidative stress markers. In parallel, WD consumption reduced caecal microbiota diversity, modified its composition towards pro-inflammatory profile and changed caecal metabolome. Data integration identified strong correlations between gut microbiota sub-networks, unidentified caecal metabolites and hypothalamic oxidative stress metabolites. Germ-free rats displayed reduced energy intake and no changes in redox homoeostasis machinery expression or pro-inflammatory cytokines after 2 days of WD, in contrast to conventional rats, which exhibited increased SOD2, GLRX and IL-6 mRNA levels.

Conclusion

A potentially pro-inflammatory gut microbiota and an early hypothalamic oxidative stress appear shortly after WD introduction. Tripartite data integration highlighted putative links between gut microbiota sub-networks and hypothalamic oxidative stress. Together with the absence of hypothalamic modifications in germ-free rats, this strongly suggests the involvement of the microbiota-hypothalamus axis in rat adaptation to WD introduction and in energy homoeostasis regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: First week energy intake after WD introduction is correlated to 6-week obesity phenotype.
Fig. 2: Hypothalamic metabolome evolution during adaptation to WD in conventional rats.
Fig. 3: Evolution of caecal microbiota diversity and composition during early adaptation to WD in conventional rats.
Fig. 4: Tripartite network showing links between caecal microbiota, caecal metabolome and hypothalamic oxidative stress.
Fig. 5: Germ-free and conventional rat response to 2 days of WD consumption.

Similar content being viewed by others

Data availability

R code and raw metabolomic data used in this study are available upon request to the corresponding author. Raw microbiota sequences are available at Sequence Read Archive (BioProject ID 602836).

References

  1. Berthoud H-R. Homeostatic and non-homeostatic pathways involved in the control of food intake and energy balance. Obesity. 2006;14:197S–200S.

    PubMed  Google Scholar 

  2. Ciofi P, Garret M, Lapirot O, Lafon P, Loyens A, Prévot V, et al. Brain-endocrine interactions: a microvascular route in the mediobasal hypothalamus. Endocrinology. 2009;150:5509–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Dietrich MO, Horvath TL. Hypothalamic control of energy balance: insights into the role of synaptic plasticity. Trends Neurosci. 2013;36:65–73.

    CAS  PubMed  Google Scholar 

  4. Nuzzaci D, Laderrière A, Lemoine A, Nédélec E, Pénicaud L, Rigault C, et al. Plasticity of the melanocortin system: determinants and possible consequences on food intake. Front Endocrinol. 2015;6. https://doi.org/10.3389/fendo.2015.00143.

  5. Pinto S. Rapid rewiring of arcuate nucleus feeding circuits by leptin. Science. 2004;304:110–5.

    CAS  PubMed  Google Scholar 

  6. Pierce AA, Xu AW. De novo neurogenesis in adult hypothalamus as a compensatory mechanism to regulate energy balance. J Neurosci. 2010;30:723–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Benani A, Hryhorczuk C, Gouaze A, Fioramonti X, Brenachot X, Guissard C, et al. Food intake adaptation to dietary fat involves PSA-dependent rewiring of the arcuate melanocortin system in mice. J Neurosci. 2012;32:11970–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hamilton MK, Boudry G, Lemay DG, Raybould HE. Changes in intestinal barrier function and gut microbiota in high-fat diet-fed rats are dynamic and region dependent. Am J Physiol Gastrointest Liver Physiol. 2015;308:G840–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Guerville M, Hamilton MK, Ronveaux CC, Ellero-Simatos S, Raybould HE, Boudry G. Chronic refined low-fat diet consumption reduces cholecystokinin satiation in rats. Eur J Nutr. 2019;58:2497–510.

    CAS  PubMed  Google Scholar 

  10. Argueta DA, DiPatrizio NV. Peripheral endocannabinoid signaling controls hyperphagia in western diet-induced obesity. Physiol Behav. 2017;171:32–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Argueta DA, Perez PA, Makriyannis A, DiPatrizio NV. Cannabinoid CB1 receptors inhibit gut-brain satiation signaling in diet-induced obesity. Front Physiol. 2019;10:704.

    PubMed  PubMed Central  Google Scholar 

  12. Brenachot X, Nédélec E, Ben Fradj S, Boudry G, Douard V, Laderrière A, et al. Lack of hypothalamus polysialylation inducibility correlates with maladaptive eating behaviors and predisposition to obesity. Front Nutr. 2018;5:6.

    Google Scholar 

  13. Valdivia S, Patrone A, Reynaldo M, Perello M. Acute high fat diet consumption activates the mesolimbic circuit and requires orexin signaling in a mouse model. PLoS ONE. 2014;9:e87478.

    PubMed  PubMed Central  Google Scholar 

  14. Butler AA, Marks DL, Fan W, Kuhn CM, Bartolome M, Cone RD. Melanocortin-4 receptor is required for acute homeostatic responses to increased dietary fat. Nat Neurosci. 2001;4:605–11.

    CAS  PubMed  Google Scholar 

  15. Buckman LB, Thompson MM, Lippert RN, Blackwell TS, Yull FE, Ellacott KLJ. Evidence for a novel functional role of astrocytes in the acute homeostatic response to high-fat diet intake in mice. Mol Metab. 2015;4:58–63.

    CAS  PubMed  Google Scholar 

  16. Gouazé A, Brenachot X, Rigault C, Krezymon A, Rauch C, Nédélec E, et al. Cerebral cell renewal in adult mice controls the onset of obesity. PLoS ONE. 2013;8:e72029.

    PubMed  PubMed Central  Google Scholar 

  17. Thaler JP, Yi C-X, Schur EA, Guyenet SJ, Hwang BH, Dietrich MO, et al. Obesity is associated with hypothalamic injury in rodents and humans. J Clin Invest. 2012;122:153–62.

    CAS  PubMed  Google Scholar 

  18. Mendes NF, Kim Y-B, Velloso LA, Araújo EP. Hypothalamic microglial activation in obesity: a mini-review. Front Neurosci. 2018;12:846.

    PubMed  PubMed Central  Google Scholar 

  19. Terrien J, Seugnet I, Seffou B, Herrero MJ, Bowers J, Chamas L, et al. Reduced central and peripheral inflammatory responses and increased mitochondrial activity contribute to diet-induced obesity resistance in WSB/EiJ mice. Sci Rep. 2019;9:19696.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Souza ACP, Souza CM, Amaral CL, Lemes SF, Santucci LF, Milanski M, et al. Short-term high-fat diet consumption reduces hypothalamic expression of the nicotinic acetylcholine receptor α7 subunit (α7nAChR) and affects the anti-inflammatory response in a mouse model of sepsis. Front Immunol. 2019;10:565.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Sugiyama M, Banno R, Yaginuma H, Taki K, Mizoguchi A, Tsunekawa T, et al. Hypothalamic glial cells isolated by MACS reveal that microglia and astrocytes induce hypothalamic inflammation via different processes under high-fat diet conditions. Neurochem Int. 2020;136:104733.

    CAS  PubMed  Google Scholar 

  22. Morari J, Anhe GF, Nascimento LF, de Moura RF, Razolli D, Solon C, et al. Fractalkine (CX3CL1) is involved in the early activation of hypothalamic inflammation in experimental obesity. Diabetes. 2014;63:3770–84.

    CAS  PubMed  Google Scholar 

  23. André C, Guzman-Quevedo O, Rey C, Rémus-Borel J, Clark S, Castellanos-Jankiewicz A, et al. Inhibiting microglia expansion prevents diet-induced hypothalamic and peripheral inflammation. Diabetes. 2017;66:908–19.

    PubMed  Google Scholar 

  24. Dourmashkin JT, Chang G-Q, Hill JO, Gayles EC, Fried SK, Leibowitz SF. Model for predicting and phenotyping at normal weight the long-term propensity for obesity in Sprague–Dawley rats. Physiol Beh. 2006;87:666–78.

    CAS  Google Scholar 

  25. Vaanholt LM, Sinclair RE, Mitchell SE, Speakman JR. Factors influencing individual variability in high fat diet-induced weight gain in out-bred MF1 mice. Physiol Behav. 2015;144:146–55.

    CAS  PubMed  Google Scholar 

  26. Gupta S, Knight AG, Gupta S, Keller JN, Bruce-Keller AJ. Saturated long-chain fatty acids activate inflammatory signaling in astrocytes: fatty acids and glial inflammation. J Neurochem. 2012;120:1060–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hsieh C-F, Ching-Kuan L, Ching-Tien L, Liang-En Y, Jiz-Yuh W. Acute glucose fluctuation impacts microglial activity, leading to inflammatory activation or self-degradation. Sci Rep. 2018;9:16.

    Google Scholar 

  28. McLean FH, Campbell FM, Langston RF, Sergi D, Resch C, Grant C, et al. A high-fat diet induces rapid changes in the mouse hypothalamic proteome. Nutr Metab (Lond). 2019;16:26.

    Google Scholar 

  29. Popa-Wagner A, Mitran S, Sivanesan S, Chang E, Buga A-M. ROS and brain diseases: the good, the bad, and the ugly. Oxid Med Cell Longev. 2013;2013:1–14.

    Google Scholar 

  30. Spielman LJ, Gibson DL, Klegeris A. Unhealthy gut, unhealthy brain: the role of the intestinal microbiota in neurodegenerative diseases. Neurochem Int. 2018;120:149–63.

    CAS  PubMed  Google Scholar 

  31. Li J-M, Yu R, Zhang L-P, Wen S-Y, Wang S-J, Zhang X-Y, et al. Dietary fructose-induced gut dysbiosis promotes mouse hippocampal neuroinflammation: a benefit of short-chain fatty acids. Microbiome. 2019;7:98.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Pearson-Leary J, Zhao C, Bittinger K, Eacret D, Luz S, Vigderman AS, et al. The gut microbiome regulates the increases in depressive-type behaviors and in inflammatory processes in the ventral hippocampus of stress vulnerable rats. Mol Psychiatry. 2020;25:1068–79.

    PubMed  Google Scholar 

  33. Kreutzer C, Peters S, Schulte DM, Fangmann D, Türk K, Wolff S, et al. Hypothalamic inflammation in human obesity is mediated by environmental and genetic factors. Diabetes. 2017;66:2407–15.

    CAS  PubMed  Google Scholar 

  34. Rizzatti G, Lopetuso LR, Gibiino G, Binda C, Gasbarrini A. Proteobacteria: a common factor in human diseases. BioMed Res Int. 2017;2017:1–7.

    Google Scholar 

  35. Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med. 2009;1:6ra14.

    PubMed  PubMed Central  Google Scholar 

  36. Arnaud AP, Rome V, Richard M, Formal M, David‐Le Gall S, Boudry G. Post‐natal co‐development of the microbiota and gut barrier function follows different paths in the small and large intestine in piglets. FASEB J. 2020;34:1430–46.

    CAS  PubMed  Google Scholar 

  37. Gao X, Pujos-Guillot E, Sébédio J-L. Development of a quantitative metabolomic approach to study clinical human fecal water metabolome based on trimethylsilylation derivatization and GC/MS analysis. Anal Chem. 2010;82:6447–56.

    CAS  PubMed  Google Scholar 

  38. Giacomoni F, Le Corguille G, Monsoor M, Landi M, Pericard P, Petera M, et al. Workflow4Metabolomics: a collaborative research infrastructure for computational metabolomics. Bioinformatics. 2015;31:1493–5.

    CAS  PubMed  Google Scholar 

  39. Zhang X, Grosfeld A, Williams E, Vasiliauskas D, Barretto S, Smith L, et al. Fructose malabsorption induces cholecystokinin expression in the ileum and cecum by changing microbiota composition and metabolism. FASEB J. 2019;33:7126–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Zoppi J, Guillaume J-F, Neunlist M, Chaffron S. MiBiOmics: an interactive web application for multi-omics data exploration and integration. Bioinformatics. 2020. https://doi.org/10.1101/2020.04.24.031773.

    Article  Google Scholar 

  41. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559.

    PubMed  PubMed Central  Google Scholar 

  42. Lu SC. Regulation of glutathione synthesis. Mol Aspects Med. 2009;30:42–59.

    CAS  PubMed  Google Scholar 

  43. Dello SAWG, Neis EPJG, de Jong MC, van Eijk HMH, Kicken CH, Olde Damink SWM, et al. Systematic review of ophthalmate as a novel biomarker of hepatic glutathione depletion. Clin Nutr. 2013;32:325–30.

    CAS  PubMed  Google Scholar 

  44. Johnson WM, Wilson-Delfosse AL, Mieyal JJ. Dysregulation of glutathione homeostasis in neurodegenerative diseases. Nutrients. 2012;4:1399–440.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol. 2014;24:R453–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Hanschmann E-M, Godoy JR, Berndt C, Hudemann C, Lillig CH. Thioredoxins, glutaredoxins, and peroxiredoxins—molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling. Antioxid Redox Signal. 2013;19:1539–605.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Leloup C, Magnan C, Benani A, Bonnet E, Alquier T, Offer G, et al. Mitochondrial reactive oxygen species are required for hypothalamic glucose sensing. Diabetes. 2006;55:2084–90.

    CAS  PubMed  Google Scholar 

  48. Benani A, Troy S, Carmona MC, Fioramonti X, Lorsignol A, Leloup C, et al. Role for mitochondrial reactive oxygen species in brain lipid sensing: redox regulation of food intake. Diabetes. 2007;56:152–60.

    CAS  PubMed  Google Scholar 

  49. Hussain T, Tan B, Yin Y, Blachier F, Tossou MCB, Rahu N. Oxidative stress and inflammation: what polyphenols can do for us? Oxid Med Cell Longev. 2016;2016:1–9.

    Google Scholar 

  50. Le Thuc O, Stobbe K, Cansell C, Nahon J-L, Blondeau N, Rovère C. Hypothalamic inflammation and energy balance disruptions: spotlight on chemokines. Front Endocrinol. 2017;8. https://doi.org/10.3389/fendo.2017.00197.

  51. Shin N-R, Whon TW, Bae J-W. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 2015;33:496–503.

    CAS  PubMed  Google Scholar 

  52. Lopetuso LR, Petito V, Graziani C, Schiavoni E, Paroni Sterbini F, Poscia A, et al. Gut microbiota in health, diverticular disease, irritable bowel syndrome, and inflammatory bowel diseases: time for microbial marker of gastrointestinal disorders. Dig Dis. 2018;36:56–65.

    PubMed  Google Scholar 

  53. Karczewski J, Troost FJ, Konings I, Dekker J, Kleerebezem M, Brummer R-JM, et al. Regulation of human epithelial tight junction proteins by Lactobacillus plantarum in vivo and protective effects on the epithelial barrier. Am J Physiol Gastrointest Liver Physiol. 2010;298:G851–9.

    CAS  PubMed  Google Scholar 

  54. Waise TMZ, Toshinai K, Naznin F, NamKoong C, Md Moin AS, Sakoda H, et al. One-day high-fat diet induces inflammation in the nodose ganglion and hypothalamus of mice. Biochem Biophys Res Commun. 2015;464:1157–62.

    CAS  PubMed  Google Scholar 

  55. Baufeld C, Osterloh A, Prokop S, Miller KR, Heppner FL. High-fat diet-induced brain region-specific phenotypic spectrum of CNS resident microglia. Acta Neuropathol. 2016;132:361–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Moschen S, Higgins J, Di Rienzo JA, Heinz RA, Paniego N, Fernandez P. Network and biosignature analysis for the integration of transcriptomic and metabolomic data to characterize leaf senescence process in sunflower. BMC Bioinformatics. 2016;17:174.

    PubMed  PubMed Central  Google Scholar 

  57. Zhang S, Liu W, Liu X, Qi J, Deng C. Biomarkers identification for acute myocardial infarction detection via weighted gene co-expression network analysis. Medicine. 2017;96:e8375.

    PubMed  PubMed Central  Google Scholar 

  58. Gaastra W, Kusters JG, van Duijkeren E, Lipman LJA. Escherichia fergusonii. Vet Microbiol. 2014;172:7–12.

    CAS  PubMed  Google Scholar 

  59. Armstrong H, Alipour M, Valcheva R, Bording-Jorgensen M, Jovel J, Zaidi D, et al. Host immunoglobulin G selectively identifies pathobionts in pediatric inflammatory bowel diseases. Microbiome. 2019;7:1.

    PubMed  PubMed Central  Google Scholar 

  60. Kriss M, Hazleton KZ, Nusbacher NM, Martin CG, Lozupone CA. Low diversity gut microbiota dysbiosis: drivers, functional implications and recovery. Curr Opin Microbiol. 2018;44:34–40.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Mathilde Guerville and Annaëlle Sinquin as well as Helen Raybould. We thank Isabelle Nogret for her technical help. Caecal Metabolomic analysis were performed within the metaboHUB French infrastructure (ANR-INBS-0010). This work was partly funded by a grant from INRAE AlimH division.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaëlle Boudry.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fouesnard, M., Zoppi, J., Petera, M. et al. Dietary switch to Western diet induces hypothalamic adaptation associated with gut microbiota dysbiosis in rats. Int J Obes 45, 1271–1283 (2021). https://doi.org/10.1038/s41366-021-00796-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-021-00796-4

This article is cited by

Search

Quick links