Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pediatrics

Transcriptome-wide association study identifies multiple genes associated with childhood body mass index

Subjects

Abstract

Background

Childhood obesity is one of the most common and costly nutritional problems with high heritability. The genetic mechanism of childhood obesity remains unclear. Here, we conducted a transcriptome-wide association study (TWAS) to identify novel genes for childhood obesity.

Methods

By integrating the GWAS summary of childhood body mass index (BMI), we conducted TWAS analyses with pre-computed gene expression weights in 39 obesity priority tissues. The GWAS summary statistics of childhood BMI were derived from the early growth genetics consortium with 35,668 children from 20 studies.

Results

We identified 15 candidate genes for childhood BMI after Bonferroni corrections. The most significant gene, ADCY3, was identified in 13 tissues, including adipose, brain, and blood. Interestingly, eight genes were only identified in the specific tissue, such as FAIM2 in the brain (P = 2.04 × 10−7) and fat mass and obesity-associated gene (FTO) in the muscle (P = 1.93 × 10−8). Compared with the TWAS results of adult BMI, we found that one gene TUBA1B with predominant influence only on childhood BMI in the muscle (P = 1.12 × 10−7). We evaluated the candidate genes by querying public databases and identified 12 genes functionally related to obesity phenotypes, including nine differentially expressed genes during the differentiation of human preadipocyte cells. The remaining genes (FAM150B, KNOP1, and LMBR1L) were regarded as novel candidate genes for childhood BMI.

Conclusions

Our study identified multiple candidate genes for childhood BMI, providing novel clues for understanding the genetic mechanism of childhood obesity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: TWAS results for childhood BMI.
Fig. 2: Scatter plot of common gene ontology terms shared by TWAS and mRNA expression profiling of human Simpson–Golabi–Behmel Syndrome (SGBS) preadipocyte cells.

Similar content being viewed by others

References

  1. Muc M, Mota-Pinto A, Padez C. Association between obesity and asthma—epidemiology, pathophysiology and clinical profile. Nutr Res Rev. 2016;29:194–201.

    Article  CAS  PubMed  Google Scholar 

  2. Wing YK, Hui SH, Pak WM, Ho CK, Cheung A, Li AM, et al. A controlled study of sleep related disordered breathing in obese children. Arch Dis Child. 2003;88:1043–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Goran MI, Ball GD, Cruz ML. Obesity and risk of type 2 diabetes and cardiovascular disease in children and adolescents. J Clin Endocrinol Metab. 2003;88:1417–27.

    Article  CAS  PubMed  Google Scholar 

  4. Freedman DS, Mei Z, Srinivasan SR, Berenson GS, Dietz WH. Cardiovascular risk factors and excess adiposity among overweight children and adolescents: the Bogalusa heart study. J Pediatr. 2007;150:12–7.e2.

    Article  PubMed  Google Scholar 

  5. Griffiths LJ, Parsons TJ, Hill AJ. Self-esteem and quality of life in obese children and adolescents: a systematic review. Int J Pediatr Obes. 2010;5:282–304.

    Article  PubMed  Google Scholar 

  6. Singh AS, Mulder C, Twisk JW, van Mechelen W, Chinapaw MJ. Tracking of childhood overweight into adulthood: a systematic review of the literature. Obes Rev. 2008;9:474–88.

    Article  CAS  PubMed  Google Scholar 

  7. Reilly JJ, Kelly J. Long-term impact of overweight and obesity in childhood and adolescence on morbidity and premature mortality in adulthood: systematic review. Int J Obes. 2011;35:891–8.

    Article  CAS  Google Scholar 

  8. Withrow D, Alter DA. The economic burden of obesity worldwide: a systematic review of the direct costs of obesity. Obes Rev. 2011;12:131–41.

    Article  CAS  PubMed  Google Scholar 

  9. Heymsfield SB, Wadden TA. Mechanisms, pathophysiology, and management of obesity. N Engl J Med. 2017;376:254–66.

    Article  CAS  PubMed  Google Scholar 

  10. Felix JF, Bradfield JP, Monnereau C, van der Valk RJ, Stergiakouli E, Chesi A, et al. Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index. Hum Mol Genet. 2016;25:389–403.

    Article  CAS  PubMed  Google Scholar 

  11. Bradfield JP, Vogelezang S, Felix JF, Chesi A, Helgeland O, Horikoshi M, et al. A trans-ancestral meta-analysis of genome-wide association studies reveals loci associated with childhood obesity. Hum Mol Genet. 2019;28:3327–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yengo L, Sidorenko J, Kemper KE, Zheng Z, Wood AR, Weedon MN, et al. Meta-analysis of genome-wide association studies for height and body mass index in approximately 700000 individuals of European ancestry. Hum Mol Genet. 2018;27:3641–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Haworth CMA, Carnell S, Meaburn EL, Davis OSP, Plomin R, Wardle J. Increasing heritability of BMI and stronger associations with the FTO gene over childhood. Obesity. 2008;16:2663–8.

    Article  PubMed  Google Scholar 

  14. Sovio U, Mook-Kanamori DO, Warrington NM, Lawrence R, Briollais L, Palmer CNA, et al. Association between common variation at the FTO locus and changes in body mass index from infancy to late childhood: the complex nature of genetic association through growth and development. PLoS Genet. 2011;7:e1001307.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Elks CE, den Hoed M, Zhao JH, Sharp SJ, Wareham NJ, Loos RJ, et al. Variability in the heritability of body mass index: a systematic review and meta-regression. Front Endocrinol. 2012;3:29.

    Article  Google Scholar 

  16. Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, et al. Systematic localization of common disease-associated variation in regulatory DNA. Science. 2012;337:1190–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gusev A, Mancuso N, Won H, Kousi M, Finucane HK, Reshef Y, et al. Transcriptome-wide association study of schizophrenia and chromatin activity yields mechanistic disease insights. Nat Genet. 2018;50:538–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Price AL, Spencer CCA, Donnelly P. Progress and promise in understanding the genetic basis of common diseases. Proc R Soc B. 2015;282:20151684.

  19. Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis C, Doyle F, et al. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74.

    Article  CAS  Google Scholar 

  20. Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-Moussavi A, et al. Integrative analysis of 111 reference human epigenomes. Nature. 2015;518:317–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Soldner F, Stelzer Y, Shivalila CS, Abraham BJ, Latourelle JC, Barrasa MI, et al. Parkinson-associated risk variant in distal enhancer of alpha-synuclein modulates target gene expression. Nature. 2016;533:95–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Claussnitzer M, Dankel SN, Kim KH, Quon G, Meuleman W, Haugen C, et al. FTO obesity variant circuitry and adipocyte browning in humans. N Engl J Med. 2015;373:895–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci USA. 2009;106:9362–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sekar A, Bialas AR, de Rivera H, Davis A, Hammond TR, Kamitaki N, et al. Schizophrenia risk from complex variation of complement component 4. Nature. 2016;530:177–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nicolae DL, Gamazon E, Zhang W, Duan SW, Dolan ME, Cox NJ. Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genet. 2010;6:e1000888.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gusev A, Lee SH, Trynka G, Finucane H, Vilhjalmsson BJ, Xu H, et al. Partitioning heritability of regulatory and cell-type-specific variants across 11 common diseases. Am J Hum Genet. 2014;95:535–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gamazon ER, Wheeler HE, Shah KP, Mozaffari SV, Aquino-Michaels K, Carroll RJ, et al. A gene-based association method for mapping traits using reference transcriptome data. Nat Genet. 2015;47:1091–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wu L, Shi W, Long J, Guo X, Michailidou K, Beesley J, et al. A transcriptome-wide association study of 229,000 women identifies new candidate susceptibility genes for breast cancer. Nat Genet. 2018;50:968–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mancuso N, Gayther S, Gusev A, Zheng W, Penney KL, Kote-Jarai Z, et al. Large-scale transcriptome-wide association study identifies new prostate cancer risk regions. Nat Commun. 2018;9:4079.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Gusev A, Ko A, Shi H, Bhatia G, Chung W, Penninx BW, et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat Genet. 2016;48:245–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pasaniuc B, Zaitlen N, Shi H, Bhatia G, Gusev A, Pickrell J, et al. Fast and accurate imputation of summary statistics enhances evidence of functional enrichment. Bioinformatics. 2014;30:2906–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ghosh S, Bouchard C. Convergence between biological, behavioural and genetic determinants of obesity. Nat Rev Genet. 2017;18:731–48.

    Article  CAS  PubMed  Google Scholar 

  33. Hao RH, Yang TL, Rong Y, Yao S, Dong SS, Chen H, et al. Gene expression profiles indicate tissue-specific obesity regulation changes and strong obesity relevant tissues. Int J Obes. 2018;42:363–9.

    Article  CAS  Google Scholar 

  34. Nassiri I, Lombardo R, Lauria M, Morine MJ, Moyseos P, Varma V, et al. Systems view of adipogenesis via novel omics-driven and tissue-specific activity scoring of network functional modules. Sci Rep. 2016;6:28851.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Dickinson ME, Flenniken AM, Ji X, Teboul L, Wong MD, White JK, et al. High-throughput discovery of novel developmental phenotypes. Nature. 2016;537:508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Blake JA, Eppig JT, Kadin JA, Richardson JE, Smith CL, Bult CJ. Mouse genome database (MGD)−2017: community knowledge resource for the laboratory mouse. Nucleic Acids Res. 2017;45:D723–D9.

    Article  CAS  PubMed  Google Scholar 

  37. Ghazalpour A, Rau CD, Farber CR, Bennett BJ, Orozco LD, van Nas A, et al. Hybrid mouse diversity panel: a panel of inbred mouse strains suitable for analysis of complex genetic traits. Mamm Genome. 2012;23:680–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Buniello A, MacArthur JAL, Cerezo M, Harris LW, Hayhurst J, Malangone C, et al. The NHGRI-EBI GWAS catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 2019;47:D1005–D12.

    Article  CAS  PubMed  Google Scholar 

  39. Heinonen S, Jokinen R, Rissanen A, Pietilainen KH. White adipose tissue mitochondrial metabolism in health and in obesity. Obes Rev. 2020;21:e12958.

    Article  PubMed  Google Scholar 

  40. Loos RJ, Yeo GS. The bigger picture of FTO: the first GWAS-identified obesity gene. Nat Rev Endocrinol. 2014;10:51–61.

    Article  CAS  PubMed  Google Scholar 

  41. Speliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G, Jackson AU, et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet. 2010;42:937–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Saeed S, Bonnefond A, Tamanini F, Mirza MU, Manzoor J, Janjua QM, et al. Loss-of-function mutations in ADCY3 cause monogenic severe obesity. Nat Genet. 2018;50:175–9.

    Article  CAS  PubMed  Google Scholar 

  43. Grarup N, Moltke I, Andersen MK, Dalby M, Vitting-Seerup K, Kern T, et al. Loss-of-function variants in ADCY3 increase risk of obesity and type 2 diabetes. Nat Genet. 2018;50:172-+.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Taylor K, Smith GD, Relton CL, Gaunt TR, Richardson TG. Prioritizing putative influential genes in cardiovascular disease susceptibility by applying tissue-specific Mendelian randomization. Genome Med. 2019;11:6.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study is supported by the National Natural Science Foundation of China (31871264 and 32070588); Shaanxi Provincial Key Research and Development Project (2019ZDLSF01-09); the Innovative Talent Promotion Plan of Shaanxi Province for Young Sci-Tech New Star (2018KJXX-010); and the Fundamental Research Funds for the Central Universities. This study is also supported by the High-Performance Computing Platform of Xi’an Jiaotong University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Chen or Yan Guo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, S., Wu, H., Ding, JM. et al. Transcriptome-wide association study identifies multiple genes associated with childhood body mass index. Int J Obes 45, 1105–1113 (2021). https://doi.org/10.1038/s41366-021-00780-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-021-00780-y

This article is cited by

Search

Quick links