Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Physiology and Biochemistry

Breast milk apelin level increases with maternal obesity and high-fat feeding during lactation

Subjects

Abstract

Objective

Recent evidence indicates that levels of breast milk (BM) hormones such as leptin can fluctuate with maternal adiposity, suggesting that BM hormones may signal maternal metabolic and nutritional environments to offspring during postnatal development. The hormone apelin is highly abundant in BM but its regulation during lactation is completely unknown. Here, we evaluated whether maternal obesity and overnutrition impacted BM apelin and leptin levels in clinical cohorts and lactating rats.

Methods

BM and plasma samples were collected from normal-weight and obese breastfeeding women, and from lactating rats fed a control or a high fat (HF) diet during lactation. Apelin and leptin levels were assayed by ELISA. Mammary gland (MG) apelin expression and its cellular localization in lactating rats was measured by quantitative RT-PCR and immunofluorescence, respectively.

Results

BM apelin levels increased with maternal BMI, whereas plasma apelin levels decreased. BM apelin was also positively correlated with maternal insulin and C-peptide levels. In rats, maternal HF feeding exclusively during lactation was sufficient to increase BM apelin levels and decrease its plasma concentration without changing body weight. In contrast, BM leptin levels increased with maternal BMI in humans, but did not change with maternal HF feeding during lactation in rats. Apelin is highly expressed in the rat MG during lactation and was mainly localized to mammary myoepithelial cells. We found that MG apelin gene expression was up-regulated by maternal HF diet and positively correlated with BM apelin content and maternal insulinemia.

Conclusions

Our study indicates that BM apelin levels increase with long- and short-term overnutrition, possibly via maternal hyperinsulinemia and transcriptional upregulation of MG apelin expression in myoepithelial cells. Apelin regulates many physiological processes, including energy metabolism, digestive function, and development. Further studies are needed to unravel the consequences of such changes in offspring development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Breast milk apelin and leptin levels increase in human obese mothers.
Fig. 2: HF feeding during lactation increases breast milk apelin levels in rats.
Fig. 3: Apelin mRNA expression and peptide concentration in mammary gland from HF and C-fed rat mothers.
Fig. 4: Apelin localizes to mammary gland myoepithelial cells.

Similar content being viewed by others

References

  1. Badillo-Suarez PA, Rodriguez-Cruz M, Nieves-Morales X. Impact of metabolic hormones secreted in human breast milk on nutritional programming in childhood obesity. J Mammary Gland Biol Neoplasia. 2017;22:171–91.

    Article  PubMed  Google Scholar 

  2. Eriksen KG, Christensen SH, Lind MV, Michaelsen KF. Human milk composition and infant growth. Curr Opin Clin Nutr Metabolic Care. 2018;21:200–6.

    Article  CAS  Google Scholar 

  3. Kratzsch J, Bae YJ, Kiess W. Adipokines in human breast milk. Best Pract Res Clin Endocrinol Metab. 2018;32:27–38.

    Article  CAS  PubMed  Google Scholar 

  4. Palou A, Pico C. Leptin intake during lactation prevents obesity and affects food intake and food preferences in later life. Appetite. 2009;52:249–52.

    Article  CAS  PubMed  Google Scholar 

  5. Innis SM. Impact of maternal diet on human milk composition and neurological development of infants. Am J Clin Nutr. 2014;99:734S–41S.

    Article  CAS  PubMed  Google Scholar 

  6. Andreas NJ, Hyde MJ, Gale C, Parkinson JR, Jeffries S, Holmes E, et al. Effect of maternal body mass index on hormones in breast milk: a systematic review. PloS One. 2014;9:e115043.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Demmelmair H, Koletzko B. Variation of metabolite and hormone contents in human milk. Clin Perinatol. 2017;44:151–64.

    Article  PubMed  Google Scholar 

  8. Isganaitis E, Venditti S, Matthews TJ, Lerin C, Demerath EW, Fields DA. Maternal obesity and the human milk metabolome: associations with infant body composition and postnatal weight gain. Am J Clin Nutr. 2019;110:111–20.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Plagemann A, Harder T, Rodekamp E, Dudenhausen JW. Breast-feeding and risk for childhood obesity: response to Mayer-Davis et al. Diabetes Care. 2007;30:451–2. author reply 452

    Article  PubMed  Google Scholar 

  10. Kramer MS, Oken E, Martin RM. Infant feeding and adiposity: scientific challenges in life-course epidemiology. Am J Clin Nutr. 2014;99:1281–3.

    Article  CAS  PubMed  Google Scholar 

  11. Fields DA, George B, Williams M, Whitaker K, Allison DB, Teague A, et al. Associations between human breast milk hormones and adipocytokines and infant growth and body composition in the first 6 months of life. Pediatr Obes. 2017;12 Suppl 1:78–85.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Habata Y, Fujii R, Hosoya M, Fukusumi S, Kawamata Y, Hinuma S, et al. Apelin, the natural ligand of the orphan receptor APJ, is abundantly secreted in the colostrum. Biochimica et biophysica acta. 1999;1452:25–35.

    Article  CAS  PubMed  Google Scholar 

  13. Aydin S. The presence of the peptides apelin, ghrelin and nesfatin-1 in the human breast milk, and the lowering of their levels in patients with gestational diabetes mellitus. Peptides. 2010;31:2236–40.

    Article  CAS  PubMed  Google Scholar 

  14. Mesmin C, Fenaille F, Becher F, Tabet JC, Ezan E. Identification and characterization of apelin peptides in bovine colostrum and milk by liquid chromatography-mass spectrometry. J Proteome Res. 2011;10:5222–31.

    Article  CAS  PubMed  Google Scholar 

  15. Wysocka MB, Pietraszek-Gremplewicz K, Nowak D. The role of apelin in cardiovascular diseases, obesity and cancer. Front Physiol. 2018;9:557.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Eberle D, Marousez L, Hanssens S, Knauf C, Breton C, Deruelle P. et al. Elabela and Apelin actions in healthy and pathological pregnancies. Cytokine Growth Factor Rev. 2019;46:45–53.

    Article  CAS  PubMed  Google Scholar 

  17. Huang Z, Luo X, Liu M, Chen L. Function and regulation of apelin/APJ system in digestive physiology and pathology. J Cell Physiol. 2019;234:7796–810.

    Article  CAS  PubMed  Google Scholar 

  18. Kawamata Y, Habata Y, Fukusumi S, Hosoya M, Fujii R, Hinuma S, et al. Molecular properties of apelin: tissue distribution and receptor binding. Biochimica et biophysica acta. 2001;1538:162–71.

    Article  CAS  PubMed  Google Scholar 

  19. Hosoya M, Kawamata Y, Fukusumi S, Fujii R, Habata Y, Hinuma S, et al. Molecular and functional characteristics of APJ. Tissue distribution of mRNA and interaction with the endogenous ligand apelin. J Biological Chem. 2000;275:21061–7.

    Article  CAS  Google Scholar 

  20. Boucher J, Masri B, Daviaud D, Gesta S, Guigne C, Mazzucotelli A, et al. Apelin, a newly identified adipokine up-regulated by insulin and obesity. Endocrinology. 2005;146:1764–71.

    Article  CAS  PubMed  Google Scholar 

  21. Castan-Laurell I, Dray C, Attane C, Duparc T, Knauf C, Valet P. Apelin, diabetes, and obesity. Endocrine. 2011;40:1–9.

    Article  CAS  PubMed  Google Scholar 

  22. Hanssens S, Marx-Deseure A, Lecoutre S, Butruille L, Fournel A, Knauf C, et al. Maternal obesity alters the apelinergic system at the feto-maternal interface. Placenta. 2016;39:41–4.

    Article  CAS  PubMed  Google Scholar 

  23. Zaki M, Kamal S, Ezzat W, Hassan N, Yousef W, Ryad H, et al. Serum apelin levels and metabolic risk markers in obese women. J Genet Eng Biotechnol. 2017;15:423–9.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Butruille L, Marousez L, Pourpe C, Oger F, Lecoutre S, Catheline D, et al. Maternal high-fat diet during suckling programs visceral adiposity and epigenetic regulation of adipose tissue stearoyl-CoA desaturase-1 in offspring. Int J Obes. 2019;43:2381–93.

    Article  Google Scholar 

  25. Whitmore TJ, Trengove NJ, Graham DF, Hartmann PE. Analysis of insulin in human breast milk in mothers with type 1 and type 2 diabetes mellitus. Int J Endocrinol. 2012;2012:296368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Casabiell X, Pineiro V, Tome MA, Peino R, Dieguez C, Casanueva FF. Presence of leptin in colostrum and/or breast milk from lactating mothers: a potential role in the regulation of neonatal food intake. J Clin Endocrinol Metab. 1997;82:4270–3.

    Article  CAS  PubMed  Google Scholar 

  27. Young BE, Patinkin Z, Palmer C, de la Houssaye B, Barbour LA, Hernandez T, et al. Human milk insulin is related to maternal plasma insulin and BMI: but other components of human milk do not differ by BMI. Eur J Clin Nutr. 2017;71:1094–1100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Houseknecht KL, McGuire MK, Portocarrero CP, McGuire MA, Beerman K. Leptin is present in human milk and is related to maternal plasma leptin concentration and adiposity. Biochem Biophys Res Commun. 1997;240:742–7.

    Article  CAS  PubMed  Google Scholar 

  29. Uysal FK, Onal EE, Aral YZ, Adam B, Dilmen U, Ardicolu Y. Breast milk leptin: its relationship to maternal and infant adiposity. Clin Nutr. 2002;21:157–60.

    Article  CAS  PubMed  Google Scholar 

  30. Kucur M, Tuten A, Oncul M, Acikgoz AS, Yuksel MA, Imamoglu M, et al. Maternal serum apelin and YKL-40 levels in early and late-onset pre-eclampsia. Hypertens Pregnancy. 2014;33:467–75.

    Article  CAS  PubMed  Google Scholar 

  31. Wang Z, Greeley GH Jr, Qiu S. Immunohistochemical localization of apelin in human normal breast and breast carcinoma. J Mol Histol. 2008;39:121–4.

    Article  CAS  PubMed  Google Scholar 

  32. Gronberg M, Amini RM, Stridsberg M, Janson ET, Saras J. Neuroendocrine markers are expressed in human mammary glands. Regul Pept. 2010;160:68–74.

    Article  PubMed  Google Scholar 

  33. Mercati F, Maranesi M, Dall'Aglio C, Petrucci L, Pasquariello R, Tardella FM, et al. Apelin system in mammary gland of sheep reared in semi-natural pastures of the central apennines. Animals. 2018;8:223.

    Article  Google Scholar 

  34. Macias H, Hinck L. Mammary gland development. Wiley Interdiscip Rev Dev Biol. 2012;1:533–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Barsky SH, Karlin NJ. Myoepithelial cells: autocrine and paracrine suppressors of breast cancer progression. J Mammary Gland Biol Neoplasia. 2005;10:249–60.

    Article  PubMed  Google Scholar 

  36. Bonnet M, Gourdou I, Leroux C, Chilliard Y, Djiane J. Leptin expression in the ovine mammary gland: putative sequential involvement of adipose, epithelial, and myoepithelial cells during pregnancy and lactation. J Anim Sci. 2002;80:723–8.

    Article  CAS  PubMed  Google Scholar 

  37. Jarde T, Caldefie-Chezet F, Damez M, Mishellany F, Perrone D, Penault-Llorca F, et al. Adiponectin and leptin expression in primary ductal breast cancer and in adjacent healthy epithelial and myoepithelial tissue. Histopathology. 2008;53:484–7.

    Article  CAS  PubMed  Google Scholar 

  38. Wei L, Hou X, Tatemoto K. Regulation of apelin mRNA expression by insulin and glucocorticoids in mouse 3T3-L1 adipocytes. Regul Pept. 2005;132:27–32.

    Article  CAS  PubMed  Google Scholar 

  39. Burnol AF, Loizeau M, Girard J. Insulin receptor activity and insulin sensitivity in mammary gland of lactating rats. Am J Physiol. 1990;259:E828–34.

    CAS  PubMed  Google Scholar 

  40. Hvid H, Fels JJ, Kirk RK, Thorup I, Jensen HE, Hansen BF, et al. In situ phosphorylation of Akt and ERK1/2 in rat mammary gland, colon, and liver following treatment with human insulin and IGF-1. Toxicol Pathol. 2011;39:623–40.

    Article  CAS  PubMed  Google Scholar 

  41. Perez-Echarri N, Perez-Matute P, Marcos-Gomez B, Martinez JA, Moreno-Aliaga MJ. Effects of eicosapentaenoic acid ethyl ester on visfatin and apelin in lean and overweight (cafeteria diet-fed) rats. Br J Nutr. 2009;101:1059–67.

    Article  CAS  PubMed  Google Scholar 

  42. Lorente-Cebrian S, Bustos M, Marti A, Martinez JA, Moreno-Aliaga MJ. Eicosapentaenoic acid up-regulates apelin secretion and gene expression in 3T3-L1 adipocytes. Mol Nutr Food Res. 2010;54 Suppl 1:S104–11.

    Article  CAS  PubMed  Google Scholar 

  43. Prostek A, Gajewska M, Balasinska B. The influence of eicosapentaenoic acid and docosahexaenoic acid on expression of genes connected with metabolism and secretory functions of ageing 3T3-L1 adipocytes. Prostaglandins Other Lipid Mediat. 2016;125:48–56.

    Article  CAS  PubMed  Google Scholar 

  44. Bertrand C, Pignalosa A, Wanecq E, Rancoule C, Batut A, Deleruyelle S, et al. Effects of dietary eicosapentaenoic acid (EPA) supplementation in high-fat fed mice on lipid metabolism and apelin/APJ system in skeletal muscle. PloS One. 2013;8:e78874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Guo W, Liu J, Hou S, Hu G, Ma H, Gong Q, et al. The inflammatory environment mediated by a high-fat diet inhibited the development of mammary glands and destroyed the tight junction in pregnant mice. Food Funct. 2020;11:8193–201.

    Article  CAS  PubMed  Google Scholar 

  46. Galon-Tilleman H, Yang H, Bednarek MA, Spurlock SM, Paavola KJ, Ko B, et al. Apelin-36 modulates blood glucose and body weight independently of canonical APJ receptor signaling. J Biological Chem. 2017;292:1925–33.

    Article  CAS  Google Scholar 

  47. Palou M, Pico C, Palou A. Leptin as a breast milk component for the prevention of obesity. Nutr Rev. 2018;76:875–92.

    PubMed  Google Scholar 

  48. Gavalda-Navarro A, Hondares E, Giralt M, Mampel T, Iglesias R, Villarroya F. Fibroblast growth factor 21 in breast milk controls neonatal intestine function. Sci Rep. 2015;5:13717.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Buts JP, De Keyser N, Dive C. Intestinal development in the suckling rat: effect of insulin on the maturation of villus and crypt cell functions. Eur J Clin Invest. 1988;18:391–8.

    Article  CAS  PubMed  Google Scholar 

  50. Lambrecht NW, Yakubov I, Zer C, Sachs G. Transcriptomes of purified gastric ECL and parietal cells: identification of a novel pathway regulating acid secretion. Physiol Genomics. 2006;25:153–65.

    Article  CAS  PubMed  Google Scholar 

  51. Wang G, Kundu R, Han S, Qi X, Englander EW, Quertermous T, et al. Ontogeny of apelin and its receptor in the rodent gastrointestinal tract. Regul Pept. 2009;158:32–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Antushevich H, Bierla J, Pawlina B, Kapica M, Krawczynska A, Herman AP, et al. Apelin’s effects on young rat gastrointestinal tract maturation. Peptides. 2015;65:1–5.

    Article  CAS  PubMed  Google Scholar 

  53. Fournel A, Drougard A, Duparc T, Marlin A, Brierley SM, Castro J, et al. Apelin targets gut contraction to control glucose metabolism via the brain. Gut. 2017;66:258–69.

    Article  CAS  PubMed  Google Scholar 

  54. Dray C, Sakar Y, Vinel C, Daviaud D, Masri B, Garrigues L, et al. The intestinal glucose-apelin cycle controls carbohydrate absorption in mice. Gastroenterology. 2013;144:771–80.

    Article  CAS  PubMed  Google Scholar 

  55. Marousez L, Lesage J, Eberle D. Epigenetics: linking early postnatal nutrition to obesity programming? Nutrients. 2019;11:2966.

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Valérie Montel, Anne Dickes and Phexmar animal housing facility for excellent help and support in animal studies; Elodie Richard at BICeL facility for microscopy and Barbara Deracinois for advice in MG peptides extractions.

Funding

This study was supported by grants of the French Ministry of Higher Education and Research, Lille University (BQR 2014), the FHU 1000 days for health (APELMILK project), the CHRU Lille hospital (OBAPE project) and Conseil Régional des Hauts-de-France. L.M. was supported by fellowships from Metropole Européenne Lilloise (MEL) and Conseil Régional des Hauts-de-France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delphine Eberlé.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marousez, L., Hanssens, S., Butruille, L. et al. Breast milk apelin level increases with maternal obesity and high-fat feeding during lactation. Int J Obes 45, 1052–1060 (2021). https://doi.org/10.1038/s41366-021-00772-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-021-00772-y

This article is cited by

Search

Quick links