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Abstract
Background The role of genetic risk scores associated with adult body mass index (BMI) on BMI levels across the life
course is unclear. We examined if a 97 single nucleotide polymorphism weighted genetic risk score (wGRS97) associated
with age-related progression in BMI at different life stages and distinct developmental trajectories of BMI across the early
life course.
Methods 2188 Cardiovascular Risk in Young Finns Study participants born pre-1980 who had genotype data and objective
measurements of height and weight collected up to 8 times from age 6 to 49 years. Associations were examined using
Individual Growth Curve analysis, Latent Class Growth Mixture Modelling, and Poisson modified regression.
Results The wGRS97 associated with BMI from age 6 years with peak effect sizes observed at age 30 years (females:
1.14 kg/m2; males: 1.09 kg/m2 higher BMI per standard deviation increase in wGRS97). The association between wGRS97
and BMI became stronger with age in childhood but slowed in adolescence, especially in females, and weakened at age
35–40 years. A higher wGRS97 associated with an increased BMI velocity in childhood and adulthood, but not with BMI
change in adulthood. Compared with belonging to a ‘normal stable’ life-course trajectory group (normal BMI from
childhood to adulthood), a one standard deviation higher wGRS97 associated with a 13–127% increased risk of belonging to
a less favourable life-course BMI trajectory group.
Conclusions Individuals with genetic susceptibility to higher adult BMI have higher levels and accelerated rates of increase
in BMI in childhood/adolescence, and are at increased risk of having a less favourable life-course BMI trajectory.

Introduction

Body mass index (BMI) tracks, or persists, from childhood to
adulthood, suggesting the roots of adult overweight and
obesity lie in childhood [1, 2]. Although those overweight or
obese in childhood and adolescence have 5–13 times higher
odds of being obese in adulthood [3], those able to amend, or
resolve, their high-risk childhood BMI status by adulthood
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are generally able to amend the increased risk that childhood
overweight or obesity contributes to subsequent cardiome-
tabolic outcomes [3, 4]. Examination of life-course BMI
development using data from multiple time-points spanning
childhood to adulthood established the presence of six dis-
tinct BMI trajectories that individuals typically follow [4].
The developmental origins of BMI trajectories vary, but data
suggest differences in BMI in childhood and rates of BMI
change across the life course [5].

Obesity and the developmental trajectories of BMI
across the life course are complex multifactorial traits
influenced by environmental and genetic factors, with twin
and family studies suggesting genetic factors contribute
40–70% of inter-individual variability in BMI [6, 7].
Genome-wide association studies (GWAS) have allowed
several genetic variants consistently associated with BMI,
fat mass, weight, and risk of obesity to be isolated, with
meta-analysis confirming 97 independent loci that influence
BMI [8]. To provide better insight into the aetiology of
obesity, it is necessary to understand the timing of such
genetic influences, particularly how known adult genetic
variants influence the variation in BMI growth patterns at
different periods in the life course [9].

Studies with genetic data and serial anthropomorphic
measurements during narrow periods of the life course [10–
15], particularly childhood, support the notion that there
may be distinct genetic effects of BMI loci that varies over
the life course, and even age-specific expression [13].
However, because few cohort studies have a population
sample that encompasses childhood, adolescent and adult
life stages, the extent to which these findings can be gen-
eralised across the life course and to other life stages,
especially transitional periods that are high risk for excess
weight gain such as adolescence and young adulthood
[16, 17] remains poorly understood [12]. The identification
of age- or period-specific genetic effects is crucial to inform
effective obesity prevention and management strategies
[18]. Therefore, we examined the combined influence of 97
known genetic risk loci (combined into a weighted genetic
risk score (wGRS97)) on individual progression of BMI
levels in childhood, adolescence, and adulthood. In addition,
we examined the association between the wGRS97 and six
distinct typical child-to-adult BMI trajectory patterns we
previously identified in a large European cohort [4].

Methods

Study cohort

The Cardiovascular Risk in Young Finns (YFS) study is an
on-going population-based follow-up of cardiovascular risk
factors in a homogenous white population of European

ancestry. In 1980, 3596 participants aged 3, 6, 9, 12, 15, and
18 years were examined in five Finnish cities and their rural
surroundings. Subsequent follow-ups were conducted every
3 years until 1992, and again in 2001 (n= 2620), 2007 (n
= 2159), and 2011 (n= 2012), resulting in up to eight
waves of measurements per individual (full details on the
study design have been published [19]). Participants
included 2188 individuals for whom genotype data and
objective measurements of height and weight were available
from age 6 to 49 years over the 31 years of follow-up. All
participants or their parents gave written informed consent
and the study was approved by local ethics committees.

Genotyping and genetic risk score computation

Genotyping was performed using the custom-built Illumina
Human 670k BeadChip, and genotypes were called using
Illumina’s clustering algorithm [20]. Imputation of geno-
types was performed using IMPUTE2 [21] and the 1000
genomes phase 1 Integrated Release Version 3 as a refer-
ence panel [22]. A weighted genetic risk score (wGRS97)
was computed using 97 independent adult BMI-associated
SNPs reported by Locke et al. [8]. The wGRS97 was
defined as the arithmetic sum of the SNP values xi (number
of effective/BMI-increasing alleles at each locus (0, 1, or 2))
weighted by their corresponding β scores (βI effect sizes in
kg/m2 per allele):

wGRS ¼
X97

i¼1

βixi:

Participants were categorised as ‘low’, ‘mid’, or ‘high’
genetic risk defined as the cohort-specific lower (25th
percentile), middle (25th–75th percentile), upper (75th
percentile) wGRS97 quartile(s) respectively.

Anthropomorphic measures and assessment of
growth

At each wave, unclothed weight was measured to the
nearest 0.1 kg using digital scales and standing height was
measured to the nearest 0.1 cm using a wall-mounted sta-
diometer. BMI at each follow-up was calculated as BMI ¼
weight ðkgÞ=ðheight ðmÞ2Þ: To identify biologically
implausible anthropomorphic measures taken in childhood
(3–18 years), sex- and age-adjusted BMI z-scores were
computed using the World Health Organisation growth
standards. Implausible BMI measurements (>4 standard
deviations from the mean for sex- and age-specific BMI Z-
score category) were considered outliers and recoded to
missing [23, 24]. For measures in adulthood, BMI was
recoded to missing for any records where weight > 250 kg
or height > 3 m [23] (total of five records).
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Life-course BMI trajectory groups

In a previous study, we identified six distinct long-term
BMI trajectories from age 6 to 49 years among 2631 YFS
participants using Latent Class Growth Mixture Modelling
(LCGMM) [4]. The six identified trajectories depicted dis-
tinct patterns of growth and change in BMI levels from
childhood to mid-adulthood, indicative of normal stable
weight status throughout the observed life course for 55.2%
participants (‘stable normal’ group, n= 1453), high-BMI
improving from young adulthood for 1.6% (‘improving’
group, n= 43), progression to overweight for 33.4%
(‘progressively overweight’ group, n= 879), progression to
adult obesity in young adulthood (late onset obesity) for
4.2% (‘progressively obese’ group, n= 110), rapid pro-
gression to obesity (early onset obesity) for 4.3% (‘rapidly
overweight/obese group’, n= 113), and persistent and
increasing obesity from an early age for 1.2% (‘persistent
increasing overweight/obese’, n= 33). Each participant was
assigned to one of these six trajectories in the sample, based
on his/her highest Bayesian posterior probabilities across
latent classes retrieved from the six classes LCGMM model
[4]. Life-course BMI trajectory group membership was
available for all 2188 YFS participants included in the
present study.

Statistical analyses

Cross-sectional and longitudinal associations between the
wGRS97 and BMI from childhood to mid-adulthood (6–49
years) was examined using age-stratified linear regression

analysis and Individual Growth Curve (IGC) analyses, a
hierarchical/multilevel mixed effect modelling approach
that allows between-person differences in intra-individual
change to be modelled for continuous longitudinal out-
comes [25–27]. IGC analysis was also used to examine the
time-averaged and time-dependent associations of the
wGRS97 with BMI levels across more restricted develop-
mental periods, by breaking down the study sample into
three separate life-stages: childhood (6–12 years), adoles-
cence (12–21 years), and adulthood (21–49 years). Across
each considered life stage, IGC models allowed us to test if
the wGRS97 associated with increased BMI on average
(time-averaged effects), or if it associated with greater rates
of change in BMI levels (time-dependent effects). Statistical
models were stratified by sex or adjusted for study year
when relevant. The detailed IGC model specification is
presented in Supplementary methods S1.

Multinomial logistic regression was used to examine the
association between the wGRS97 with the six BMI trajec-
tories our group previously identified in the YFS cohort
using LCGMM. This allowed to test if having a larger
number of risk variants increased the odds of belonging to a
more adverse life-course BMI trajectory group [4]. All
statistical analyses were conducted in R [28].

Results

Table 1 shows the sex-specific average BMI levels by life
stage and the sex-specific average wGRS97 of participants
in ‘high’, ‘mid’, and ‘low’ genetic risk groups. The average

Table 1 Sex-specific average
BMI levels (kg/m2) across the
life course and by life stages,
and wGRS97 scores among
2188 participants in the YFS and
by wGRS97 categories.

Males Females

N (Nobs)
a Mean (SD) N (Nobs)

a Mean (SD)

BMI levels (kg/m2)

Life course (6–49 years) 1004 (5249) 22.11 (5.29) 1184 (6193) 22.70 (5.25)

Life stages

Childhood (6–12 years) 671 (1360) 17.01 (2.53)c 806 (1305) 17.11 (2.66)c

Adolescence (12–21 years) 1184 (2140) 20.41 (3.25) 1004 (1916) 20.27 (3.01)

Adulthood (24–49 years) 1004 (2642) 26.26 (4.96) 1184 (3187) 25.06 (5.02)

wGRS97 categoriesb

High 246 (1929) 23.58 (5.75) 310 (2430) 22.79 (5.5)

Mid 523 (4095) 22.64 (5.17) 562 (4095) 22.11 (5.27)

Low 235 (1843) 22.01 (4.93) 312 (2451) 21.41 (4.85)

Values in parentheses indicate standard deviation, except for, where they indicate the wGRS97 range.
aN(Nobs): N number of participants considered in each analyses or number of participants in each wGRS97
category; Nobs number of non-missing BMI observations used in the analyses for each sex within each time
period.
bThe grouping of wGRS97 into high (wGRS97 > 2.43), mid (2.21 < wGRS97 ≥ 2.43), and low genetic risk
(wGRS97 < 2.21) score categories was based on whole cohort 25th and 75th percentiles (see “Methods”).
cFor the childhood period, the corresponding average BMI z-scores were 0.05 (0.002) for males and 0.06
(0.004) for females.
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wGRS97 was 2,32 (1.79–2.79) in males and 2.318
(1.80–2.83) in females followed an approximately normal
distribution (Supplementary Fig. S1).

Longitudinal associations between wGRS97 and BMI

The best non-linear fits were achieved using a quadratic
age term for the periods of childhood, adolescence and

adulthood, and a fourth-order polynomial (quartic age
term) for the life-course model that described BMI
development as a function of age from childhood to mid-
adulthood (i.e. unconditional models yielding the lowest
AIC and BIC values) (Table 2). Final models included a
continuous first-order autoregressive correlation structure
for the error and considered time-averaged and
age-related secular trends in BMI between subsequent

Table 2 Time-averaged and time-dependent effects of the combined BMI genetic risk score (wGRS97) on BMI levels (in kg/m2) at different life
stages (childhood, adolescence, adulthood, and life course).

Time-averaged wGRS effecta Time-dependent wGRS effectsb Goodness of fitd

(variance explained)

Life stage β(se)c p value β(se)c p value

Childhood (6–12 years)

Females (N= 806) 0.30 (0.06) <0.01* L: 0.12 (0.028)
Q: −0.01 (0.005)

<0.01*0.03* R2
marginal = 0.239

R2
conditional = 0.943

Males (N = 671) 0.17 (0.07) <0.01* L: 0.06 (0.03)
Q: 0.0008 (0.004)

0.05*0.85 R2
marginal = 0.211

R2
conditional = 0.953

Adolescence (12–21 years)

Females (N = 1184) 0.20 (0.07) 0.02* L:0.13 (0.03)
Q:−0.009 (0.05)

<0.01*0.09 R2
marginal = 0.26

R2
conditional = 0.91

Males (N = 1004) 0.26 (0.07) <0.01* L:0.07 (0.03)
Q:−0.005 (0.004)

<0.01*0.13 R2
marginal = 0.22

R2
conditional = 0.95

Adulthood (24–49 years)

Females (N = 1184) 0.72 (0.13) <0.01* L: 0.018 (0.02)
Q:−0.0002 (−0.0006)

0.280.73 R2
marginal = 0.09

R2
conditional = 0.94

Males (N = 1004) 0.70 (0.01) <0.01* L: 0.018 (0.02)
Q:−0.0009 (0.0007)

0.180.20 R2
marginal = 0.09

R2
conditional = 0.91

Life course
(6–49 years)

Females (N = 1184) 0.69 (0.10) <0.01* L: 0.02 (0.01)
Q: 0.001 (0.0008)
C: −0.0002 (1.0 × 10−4)
4th: −1.0001 (0.8 × 10−4)

<0.01*0.120.130.34 R2
marginal = 0.45

R2
conditional = 0.933

Males (N = 1004) 0.68 (0.11) 0.006* L:0.012 (0.028)
Q:0.005 (0.002)
C:1.0 × 10−5 (4.2 × 10−4)

4th:−1.3.10−5 (4.2 × 10−4)

0.05*0.580.920.05* R2
marginal = 0.57

R2
conditional = 0.952

For each considered life stage period, regression coefficients are extracted from the best fitting sex-specific conditional IGC model. Time-averaged
effects are expressed in kg/m2 change per 1 standard deviation (SD) increase in the wGRS97, and time-dependent effects are expressed in kg/m2

change per time unit increase per 1 SD increase in wGRS97 (see footnote). Novel conditional R2 and marginal R2 indicate goodness of fit of each
final IGC model. Predictors included in final IGC models included polynomial age terms, wGRS97, birth cohort and follow-up year (and their
interactions).

BMI body mass index, L,Q,C linear/quadratic/cubic rate of change in BMI (in kg/m2) as a function of age (in years), SD standard deviation, se
standard error.

*Regression coefficients significant at the 0.05 significance level (p ≤ 0.05).
a,bFor ease of interpretation of the estimates of time-averaged and time-dependent effects of the wGRS97 in each model, all ‘age’ terms were
centred around the youngest age in each considered period prior IGC modelling (i.e., age 6 years for childhood model (age range: 6–12 years), age
12 years for the adolescence model (age range: 12–21 years) and age 21 years for the adult model (age range: 24–49 years)), and around the
average age (24.5 years) for the life course model (age range: 6–49 years).
cReported regression coefficients βs are kg/m2 per 1 SD increase in the wGRS97 (time-averaged effects) and in kg/m2 per 1 SD increase in
wGRS97 per time unit increase (i.e. year, year2, year3, or year4 for the linear, quadratic, cubic, and quartic age terms respectively. These parameters
control the acceleration/deceleration of effect).
dThe novel conditional R2 and marginal R2 [34] describes the proportion of variance explained by the fixed effects alone, while the conditional R2

describes the proportion of variance explained by both the fixed and participant-level random factors.
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study years and birth cohort effects (see Supplementary
results S1).

Consistent with results from age-stratified regression
analyses (Supplementary results S2), time-averaged effect
estimates were significant in all considered life stages (p <
0.01, Table 2). Time-dependent effects were significant in
childhood and adolescence (i.e. βwGRS97 � Age and
βwGRS97 � Age2 parameters p values < 0.05, Table 2). An
increase in the wGRS97 was associated with faster BMI
growth rates in childhood and adolescence (i.e., p values
<0.05 for time-dependent estimates, Table 2). In contrast,
the time-dependent wGRS97 effects estimates in adult IGC
models were smaller and non-significant for either sex (p >
0.18, Table 2). The final childhood and adolescence IGC
models explained up to 26% of the variance in BMI levels
(R2

marginal, Table 2), but the same combination of variables
explained only 9% of variance in BMI in the adult IGC
model. The life-course IGC models explained 45%
deviance in BMI in females and 55% variance in BMI in
males. In this model, some time-dependent wGRS97 effect
estimates were significant, but the inclusion of linear,
quadratic, cubic, and fourth-order age polynomial terms in
the functional form makes the interpretation of interactions
(i.e. βwGRS97 � polynomial Age parameter estimates) difficult.
Time-dependent effects were visualised using parameter
estimates from the final IGC models to compute and plot the
marginal effects of the wGRS97 on BMI levels as a func-
tion of age for each sex (Fig. 1). The marginalised wGRS97
estimates showed again that the genetic effect is present and

significant at age 6 years for both sexes, but the within-
person association with BMI across the life course differed
by sex. For males, the magnitude of the association
increased rapidly with age within-person in childhood and
kept increasing at a slower rate through adolescence
(Fig. 1). For females, the effect was stronger than males at
age 6 years and gradually increased in childhood and ado-
lescence becoming more pronounced, on average, in young
adulthood (from ~22 years of age). The peak genetic effect
was reached at 35–40 years for both sexes (Fig. 1), and was
stronger for females. Results suggested a stabilisation, and
even slight decrease in males, of the wGRS97 effect on
BMI after 40 years.

Although average BMI levels were ~2 kg/m2 higher in
the ‘high’ compared with ‘low’ wGRS97 group from age 6
years, the smoothed averaged life-course BMI trajectories
of these two wGRS97 groups did not diverge noticeably at
any point in the life course (Fig. 2).

Associations between wGRS97 and latent life-course
BMI trajectory groups

wGRS97 tended to increase incrementally across more
adverse life-course trajectory groups (Table 3), however,
the average wGRS97 of participants attributed to the ‘high-
BMI improving’ group (participants whose BMI levels
improved greatly from obese levels after age 25 years) was
comparable to those in the ‘rapidly obese’ and ‘persisting/
worsening high obesity’ groups. Compared with the

Fig. 1 Sex-specific marginal effects and 95% confidence intervals
(shaded) of the wGRS97 on BMI levels as a function of age.
Marginal effect expressed as kg/m2 increase in BMI per 1 standard
deviation (SD) higher wGRS97. Colour code: pink, females; light
blue, males. Marginal effects were derived from the time-averaged
wGRS97 effect estimates and the significant higher-order polynomial
interaction terms with age (i.e., modification of the linear, quadratic,

cubic. and quartic rate of change in BMI) in the final life course IGC
models shown in Table 2. The delta method was used for approx-
imating the standard errors of the average marginal effects to derive
the 95% confidence intervals. For simplicity, the marginalised
wGRS97 effects were computed holding the other parameters at their
average values (i.e., hypothetical follow-up year set to 1995, year of
birth set to 1968) (Colour figure online).
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‘normal stable’ (reference) group, a 1 SD higher wGRS97
associated with incrementally increased risk for belonging
to more adverse BMI trajectory classes (Table 3). To help
with interpretation, model parameters were used to derive
and plot predicted probabilities of belonging to each of the
six life-course BMI trajectory groups as a function of
change in the standardised wGRS97z (Fig. 3). The prob-
ability of belonging to the ‘normal stable’ (reference) group
decreased markedly as wGRS increased, but always
remained higher among females (bottom panel, Fig. 3).
Higher deviations from average wGRS were associated with

the highest probabilities of belonging to the most adverse
trajectory classes (i.e., ‘rapidly obese’, ‘progressively
obese’, and ‘persisting/worsening high obesity’). However,
the probability of belonging to the ‘progressively over-
weight’ group followed a curved shape, increasing between
lower than average to average wGRS97 scores, but
decreasing as the scores became more extreme (third panel
from top, Fig. 3). This is consistent with our observation
that average adult BMI levels of participants classified as
‘low’ genetic risk were above the overweight cut-off
(≥25 kg/m2, Fig. 2).

Fig. 2 Smoothed averaged
BMI trajectory in the ‘High
genetic risk group’ (75th

wGRS97 percentile) and ‘Low
genetic risk’ group (25th
wGRS97 percentile), with
adult overweight and obese
cut-offs. The difference in the
averaged BMI between the two
genetic risk score groups is
about 2 kg/m2.

Table 3 Mean and standardised
wGRS97, relative risk (RR) and
95% confidence intervals (CI)
across distinct life course BMI
trajectory groups.

Mean wGRS
(SD)c

Mean z-score
wGRSz(SD)c

Nparticipants RR

wGRSz (95% CI)a Sex (95% CI)b

Normal stable 2.30 (0.16) −0.1 (1) 1197 Ref Ref

Progressively
overweight

2.32 (0.16) 0.01 (0.97) 726 1.13 (1.09–1.16)* 2.15 (2.01–2.30)*

High-BMI improving 2.39 (0.15) 0.41 (0.95) 34 1.72 (1.51–1.95)* 1.79 (1.41–2.29)*

Progressively obese 2.36 (0.14) 0.22 (0.88) 106 1.39 (1.30–1.51)* 1.08 (0.93–1.21)

Rapidly obese 2.41 (0.17) 0.56 (1.06) 92 2.01 (1.87–2.17)* 2.16 (1.85–2.52)*

Persisting/worsening
high obesity

2.43 (0.15) 0.68 (0.93) 33 2.27 (2.01–2.62)* 0.95 (0.73–1.23)

(“Normal stable” group, N= 1197) for a 1 SD increase in the wGRS.

*Indicates significant RR coefficients at the ɑ= 0.05 level (p values obtained from two-tailed p values (Wald
z-test) where all highly significant (p values < 1.0 × 10−12).
aFor wGRSz, the estimates represent the relative risk ratios for belonging to each BMI trajectory class vs. the
reference class.
bThe reference category for sex was female, so the reported estimates are the difference of relative risk ratio
in Males for being in each BMI trajectory class against the reference trajectory class (stable normal).
cMean standardised deviation score wRGSz (SD) in reference class (“normal stable” group, N= 1197
participants) was 2.30 (0.16). Student t tests revealed no sex differences in average wGRSz within each
trajectory groups, so group-average wGRSz in the table are for trajectory groups that include both males and
females.
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Discussion

This is the first study to investigate the combined effect of
obesity-predisposing genetic variants on child-to-adult BMI
trajectories. We found that a multigenic susceptibility for
higher adult BMI could be tracked from young childhood,
acting both on the BMI levels at age 6 years and the rates of
change in BMI across childhood and adolescence. In line
with a previous individual SNPs study that found most
obesity-associated polymorphisms had a larger impact on
BMI during childhood [29], we also found the genetic

variants that influence adult BMI become increasingly
important across childhood and the adolescent years, pro-
moting faster BMI gain during these developmental stages.
Moreover, our findings show that an individual with a
higher number of risk alleles is at increased risk of
belonging to a less favourable growth trajectory char-
acterised by high-BMI values from childhood to adulthood.
Our data are consistent with the hypothesis that the genetic
determinants of adult susceptibility to obesity develops
across the life course [10–12], and previous studies
[9, 30, 31] with data from more restricted periods of the life

Fig. 3 Predicted probabilities
of belonging to each identified
life-course BMI trajectory as a
function of the standardised
deviation genetic risk score
(wGRS97z). The plot is derived
using parameter estimates from
the sex- and wGRSz-score-
adjusted multinomial regression
model over a simulated grid of
predictors, and shows how a 1
SD increase in the wGRS
modifies the chance of
belonging to a more or less
healthy BMI life-course profile.
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course. Our results also suggest sex differences in the
apparent timing of effects of the wGRS97 on BMI, not
previously reported.

The combined genetic effect on BMI was highest in
young adulthood, but stabilised or decreased slightly in
males as they aged (>40 years). This suggests that past this
age, the multigenic effect on BMI plateaus or becomes
weaker, with exogenous factors such as diet, smoking, and
physical activity potentially becoming increasingly impor-
tant determinants of inter-individual variations in adult BMI
levels. This finding is consistent with individual SNP
associations studies [10–12] that reported a larger effect size
on BMI in early life than in adults for eight adult-associated
SNPs included in our combined genetic risk score (FTO,
MC4R, TMEM18, TNN13K, SEC16B, GNDPA2, QPCTL,
BNDF). These variants, known to control factors that reg-
ulate biological mechanisms such as glycaemic homo-
eostasis and metabolism, are thought to be more sensitive to
genetic alteration in early life, whereas environmental ele-
ments might play a larger role at older ages [10–12]. Our
results also concord with findings that the collective effect
of adult-associated BMI variants on body weight increases
during childhood and plateaus in late adolescence and
young adulthood [9, 13], although these studies did not
have any anthropomorphic measures past age 25 years.

Our final IGC adulthood model explained <10% variance
in BMI, suggesting that wGRS97 is not a strong determi-
nant of inter-individual variability in adult BMI. It is likely
that factors other than genetic play an important role in
between-person differences in adult BMI. In addition, the
lack of age-dependent interactions in this model suggests
the wGRS97 does not predict change/increases in BMI
levels within-person after age 24 years, suggesting the
cumulative score does not explain inter-individual variation
in weight gain across the adult period. This lack of asso-
ciation between the wGRS97 and adult BMI change from
age 24 to 49 years could also reflect developmental stage-
specific effects of genetic obesity mechanisms or the rela-
tively greater influence of accumulated environmental fac-
tors [10–12].

Although participants in more adverse life-course tra-
jectory groups tended to have larger numbers of risk-
increasing variants, obese adults whose BMI levels reduced
greatly after age 25 years (e.g., ‘high-BMI improving’
group) had a multigenic risk allele load comparable with
those in the two most adverse BMI trajectory groups. While
further research should focus on characterising these ‘high-
BMI improvers’, this finding suggests that the mechanism
by which this small group managed to overcome obesity or
greatly improve their BMI levels in adulthood is most likely
related to exogenous factors such as lifestyle changes or
intervention.

While our combined genetic risk score was associated
with increased average BMI levels and greater rates of BMI
change in childhood and adolescence, it explained a rela-
tively small proportion of the deviance in BMI levels in
these life periods (~23–26%), suggesting other variants
might be more important at these ages. It is also possible the
variants included in the wGRS97, identified in adult
populations, did not substantially alter BMI levels at these
stages of the life-course (delayed cumulative effect theory
[13]), or that they failed to play a measurable effect on BMI
because other endogenous or exogenous factors that only
manifest later in life were yet to occur [10–12]. This
highlights the importance of identifying age-specific effects
of genetic variants, which may help shed light on the life-
course aetiology of obesity and gene function. Especially,
conducting GWAS in growing children and adolescent
populations might help identify loci that have early life
effects [14, 32], providing an opportunity for new insights
into childhood obesity. From a clinical perspective, future
studies should investigate whether the wGRS97 provides
added predictive utility over paediatric BMI measures in
screening for later obesity.

We acknowledge our use of a composite risk score
prevents inference on the possible differential contribution
of individual SNPs. Moreover, as our study sample was
born pre-1980 younger generations have matured in a
comparatively more obesogenic environment and may
experience differential contribution of genetic influence on
BMI, BMI increases, and weight gain across the life course.
We did not investigate other predictors of between-person
change in within-person BMI over time. The effects of
genotype on this change is likely impacted by many factors
other than age. These include time-varying lifestyle factors
of diet and physical activity, in addition to, or in conjunc-
tion with, obesity-predisposing alleles. Further studies are
needed to determine the time-varying effect of these factors
from the effects of genetic variants. Finally, our study did
not consider the potential effects of gene–environment
interaction. Further studies should determine if the com-
posite risk score (or individual SNPs) modify individual
BMI in response to environmental risk factors, or if the
combined genetic effects of these variants differs between
groups depending on lifestyle. In addition, despite many
advantages over single SNP analyses, polygenic risk scores
are not suitable to examine if SNP–SNP interactions influ-
ence disease outcome. Future genome-wide searches for
these interactions might provide insight into the genetic
architecture that underlies the development of obesity [33].
Despite these limitations, our study strengthens the current
understanding of combined genetic influences of adult-
associated obesity-predisposing variants on developmental
trajectories of BMI across important life stages for the
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development of obesity, as well as across a 30-year period
of the life course.

We found a multigenic effect of adult obesity-associated
variants on BMI development across the life course, with
the effect most pronounced in early adulthood. Our findings
support the notion that prevention of adult obesity should
begin early in life when the joint effect of genetic variants is
still relatively low, and when adopting healthy lifestyle
habits might contribute to mitigate the genetic effect to
establish children on healthy BMI trajectories. Additional
replication in cohorts with anthropomorphic measures taken
from infancy and across young childhood are needed to
further evaluate the genetic contribution to early weight
milestones and BMI growth. This is particularly important
in the accepted paradigm for the developmental origins of
health and diseases, stating the importance of optimising
growth during early life for improving life-long health.
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