Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Clinical Research

Obesity, sleep apnea, and cancer

Abstract

The interest on a potential association between cancer and sleep-disordered breathing (SDB) has clearly gained substantial traction over the last several years. This novel relationship was initially explored in experimental models of obstructive sleep apnea (OSA) and showed that both intermittent hypoxia and sleep fragmentation, the two main hallmarks of OSA, promoted alterations in both tumorigenesis and tumor malignant properties. In parallel, an intriguing role of obesity as a major interactive player in the relationship between cancer and OSA was postulated in the following contextual settings: (1) obesity (with or without OSA) is associated with increased risk of some types of cancer (both incidence and aggressiveness), whereas obesity could be protective for others (“obesity paradox”); (2) OSA has been associated with increased risk for some types of cancer (independent of obesity), but not with others; (3) More than 80% of adult patients with OSA are overweight and >50% are obese; (4) both OSA and obesity exhibit oscillations in tissue oxygen tensions in peripheral organs such as adipose tissues. Further understanding these complex relationships become all the more important considering that the prevalence of obesity, cancer and OSA are all increasing worldwide. In parallel, experimental models of OSA provide biological plausibility constructs to the clinical and epidemiological findings, suggesting that the metabolic and inflammatory changes induced by chronic intermittent hypoxia and sleep fragmentation may foster or exacerbate immune and biomechanical alterations of the tumor microenvironment, including the expression of extracellular matrix components facilitating tumor progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cancer incidence in patients with OSA according to various criteria of severity and after adjustment by body mass index or obesity.
Fig. 2: Cancer mortality or aggressiveness in patients with OSA according to various criteria of severity and after adjustment by body mass index or obesity.
Fig. 3: Effects of sleep apnea on adipose tissue and on tumor.
Fig. 4: Simplified diagram illustrating the force transmission mechanism in the crosstalk between the ECM and cells.

Similar content being viewed by others

References

  1. Physical status: the use and interpretation of anthropometry. Report of a WHO expert committee. World Health Organ Tech Rep Ser. 1995;854:1–452.

    Google Scholar 

  2. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of US adults. N Engl J Med. 2003;348:1625–38.

    PubMed  Google Scholar 

  3. Trinchieri G. Cancer and inflammation: an old intuition with rapidly evolving new concepts. Annu Rev Immunol. 2012;30:677–706.

    CAS  PubMed  Google Scholar 

  4. Vainio H, Bianchini F. Prevent-weight control and physical activity. In: IARC handbooks of cancer 2019, vol. 6. Lyon: IARC Press; 2002.

  5. Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet. 2008;371:569–78.

    PubMed  Google Scholar 

  6. Lee DH, Giovannucci EL. The obesity paradox in cancer: epidemiologic insights and perspectives. Curr Nutr Rep. 2019;8:175–81.

    PubMed  Google Scholar 

  7. Han SJ, Boyko EJ. The evidence for an obesity paradox in Type 2 diabetes mellitus. Diabetes Metab J. 2018;42:179–87.

    PubMed  PubMed Central  Google Scholar 

  8. Naderi N, Kleine CE, Park C, Hsiung JT, Soohoo M, Tantisattamo E, et al. Obesity paradox in advanced kidney disease: from bedside to the bench. Prog Cardiovasc Dis. 2018;61:168–81.

    PubMed  PubMed Central  Google Scholar 

  9. Elagizi A, Kachur S, Lavie CJ, Carbone S, Pandey A, Ortega FB, et al. An overview and update on obesity and the obesity paradox in cardiovascular diseases. Prog Cardiovasc Dis. 2018;61:142–50.

    PubMed  Google Scholar 

  10. Lennon H, Sperrin M, Badrick E, Renehan AG. The obesity paradox in cancer: a review. Curr Oncol Rep. 2016;18:56.

    PubMed  PubMed Central  Google Scholar 

  11. Iyengar NM, Gucalp A, Dannenberg AJ, Hudis CA. Obesity and cancer mechanisms: tumor microenvironment and inflammation. J Clin Oncol. 2016;34:4270–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Deng T, Lyon CJ, Bergin S, Caligiuri MA, Hsueh WA. Obesity, inflammation, and cancer. Annu Rev Pathol. 2016;11:421–49.

    CAS  PubMed  Google Scholar 

  13. Himbert C, Delphan M, Scherer D, Bowers LW, Hursting S, Ulrich CM. Signals from the adipose microenvironment and the obesity-cancer link—a systematic review. Cancer Prev Res. 2017;10:494–506.

    CAS  Google Scholar 

  14. Amin MN, Hussain MS, Sarwar MS, Rahman Moghal MM, Das A, Hossain MZ, et al. How the association between obesity and inflammation may lead to insulin resistance and cancer. Diabetes Metab Syndr. 2019;13:1213–24.

    PubMed  Google Scholar 

  15. Ortega LS, Bradbury KE, Cross AJ, Morris JS, Gunter MJ, Murphy N. A Prospective investigation of body size, body fat composition and colorectal cancer risk in the UK biobank. Sci Rep. 2017;7:17807.

    PubMed  PubMed Central  Google Scholar 

  16. Jung IS, Shin CM, Park SJ, Park YS, Yoon H, Jo HJ, et al. Association of visceral adiposity and insulin resistance with colorectal adenoma and colorectal cancer. Intest Res. 2019;17:404–12.

    PubMed  Google Scholar 

  17. Donohoe CL, Doyle SL, Reynolds JV. Visceral adiposity, insulin resistance and cancer risk. Diabetol Metab Syndr. 2011;3:12.

    PubMed  PubMed Central  Google Scholar 

  18. Framnes SN, Arble DM. The bidirectional relationship between obstructive sleep apnea and metabolic disease. Front Endocrinology. 2018;9:440.

    Google Scholar 

  19. Carneiro G, Zanella MT. Obesity metabolic and hormonal disorders associated with obstructive sleep apnea and their impact on the risk of cardiovascular events. Metabolism. 2018;84:76–84.

    CAS  PubMed  Google Scholar 

  20. Sutherland K, Almeida FR, de Chazal P, Cistulli PA. Prediction in obstructive sleep apnoea: diagnosis, comorbidity risk, and treatment outcomes. Expert Rev Respir Med. 2018;12:293–307.

    CAS  PubMed  Google Scholar 

  21. Peppard PE, Hagen EW. The last 25 years of obstructive sleep apnea epidemiology-and the next 25? Am J Respir Crit Care Med. 2018;197:310–2.

    PubMed  Google Scholar 

  22. Franklin KA, Lindberg E. Obstructive sleep apnea is a common disorder in the population—a review on the epidemiology of sleep apnea. J Thorac Dis. 2015;7:1311–22.

    PubMed  PubMed Central  Google Scholar 

  23. Ruiz-Ojeda FJ, Mendez-Gutierrez A, Aguilera CM, Plaza-Diaz J. Extracellular matrix remodeling of adipose tissue in obesity and metabolic diseases. Int J Mol Sci. 2019;20:E4888. https://doi.org/10.3390/ijms20194888.

  24. Lempesis IG, van Meijel RLJ, Manolopoulos KN, Goossens GH. Oxygenation of adipose tissue: a human perspective. Acta Physiol. 2020;228:e13298. https://doi.org/10.1111/apha.13298.

  25. Gaspar JM, Velloso LA. Hypoxia inducible factor as a central regulator of metabolism—implications for the development of obesity. Front Neurosci. 2018;12:813.

    PubMed  PubMed Central  Google Scholar 

  26. Engin A. Adipose tissue hypoxia in obesity and its impact on preadipocytes and macrophages: hypoxia hypothesis. Adv Exp Med Biol. 2017;960:305–26.

    CAS  PubMed  Google Scholar 

  27. Jo J, Gavrilova O, Pack S, Jou W, Mullen S, Sumner AE, et al. Hypertrophy and/or hyperplasia: dynamics of adipose tissue growth. PLoS Comput Biol. 2009;5:e1000324.

    PubMed  PubMed Central  Google Scholar 

  28. Semenza GL, Agani F, Feldser D, Iyer N, Kotch L, Laughner E, et al. Hypoxia, HIF-1, and the pathophysiology of common human diseases. Adv Exp Med Biol. 2000;475:123–30.

    CAS  PubMed  Google Scholar 

  29. Ye J. Emerging role of adipose tissue hypoxia in obesity and insulin resistance. Int J Obes. 2009;33:54–66.

    CAS  Google Scholar 

  30. Ryan S, Arnaud C, Fitzpatrick SF, Gaucher J, Tamisier R, Pepin JL. Adipose tissue as a key player in obstructive sleep apnoea. Eur Respir Rev. 2019;28:190006.

    PubMed  Google Scholar 

  31. Gozal D, Gileles-Hillel A, Cortese R, Li Y, Almendros I, Qiao Z, et al. Visceral white adipose tissue after chronic intermittent and sustained hypoxia in mice. Am J Respir Cell Mol Biol. 2017;56:477–87.

    CAS  PubMed  Google Scholar 

  32. Almendros I, Farre R, Planas AM, Torres M, Bonsignore MR, Navajas D, et al. Tissue oxygenation in brain, muscle, and fat in a rat model of sleep apnea: differential effect of obstructive apneas and intermittent hypoxia. Sleep. 2011;34:1127–33.

    PubMed  PubMed Central  Google Scholar 

  33. Gileles-Hillel A, Almendros I, Khalyfa A, Nigdelioglu R, Qiao Z, Hamanaka RB, et al. Prolonged exposures to intermittent hypoxia promote visceral white adipose tissue inflammation in a murine model of severe sleep apnea: effect of normoxic recovery. Sleep. 2017;40. https://doi.org/10.1093/sleep/zsw074.

  34. Shah N, Roux F. The relationship of obesity and obstructive sleep apnea. Clin Chest Med. 2009;30:455–65.

    PubMed  Google Scholar 

  35. Young T, Palta M, Dempsey J, Skatrud J, Weber S, Badr S. The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med. 1993;328:1230–5.

    CAS  PubMed  Google Scholar 

  36. Young T, Shahar E, Nieto FJ, Redline S, Newman AB, Gottlieb DJ, et al. Predictors of sleep-disordered breathing in community-dwelling adults: the Sleep Heart Health Study. Arch Intern Med. 2002;162:893–900.

    PubMed  Google Scholar 

  37. Dixon JB, Schachter LM, O’Brien PE. Polysomnography before and after weight loss in obese patients with severe sleep apnea. Int J Obes. 2005;29:1048–54.

    CAS  Google Scholar 

  38. Johansson K, Neovius M, Lagerros YT, Harlid R, Rossner S, Granath F, et al. Effect of a very low energy diet on moderate and severe obstructive sleep apnoea in obese men: a randomised controlled trial. BMJ. 2009;339:b4609.

    PubMed  PubMed Central  Google Scholar 

  39. Peppard PE, Young T, Palta M, Dempsey J, Skatrud J. Longitudinal study of moderate weight change and sleep-disordered breathing. J Am Med Assoc. 2000;284:3015–21.

    CAS  Google Scholar 

  40. Drager LF, Brunoni AR, Jenner R, Lorenzi-Filho G, Bensenor IM, Lotufo PA. Effects of CPAP on body weight in patients with obstructive sleep apnoea: a meta-analysis of randomised trials. Thorax. 2015;70:258–64.

    PubMed  Google Scholar 

  41. Kapur V, Strohl KP, Redline S, Iber C, O’Connor G, Nieto J. Underdiagnosis of sleep apnea syndrome in U.S. communities. Sleep Breath. 2002;6:49–54.

    PubMed  Google Scholar 

  42. Heinzer R, Vat S, Marques-Vidal P, Marti-Soler H, Andries D, Tobback N, et al. Prevalence of sleep-disordered breathing in the general population: the HypnoLaus study. Lancet Respir Med. 2015;3:310–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Benjafield AV, Ayas NT, Eastwood PR, Heinzer R, Ip MSM, Morrell MJ, et al. Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis. Lancet Respir Med. 2019;7:687–98.

    PubMed  PubMed Central  Google Scholar 

  44. Dreher M, Kruger S, Schulze-Olden S, Keszei A, Storre JH, Woehrle H, et al. Sleep-disordered breathing in patients with newly diagnosed lung cancer. BMC Pulm Med. 2018;18:72.

    PubMed  PubMed Central  Google Scholar 

  45. Martinez-Garcia MA, Campos-Rodriguez F, Almendros I, Garcia-Rio F, Sanchez-de-la-Torre M, Farre R, et al. Cancer and sleep apnea: cutaneous melanoma as a case study. Am J Respir Crit Care Med. 2019;200:1345–53.

  46. Martinez-Garcia MA, Campos-Rodriguez F, Nagore E, Martorell A, Rodriguez-Peralto JL, Riveiro-Falkenbach E, et al. Sleep-disordered breathing is independently associated with increased aggressiveness of cutaneous melanoma: a multicenter observational study in 443 patients. Chest. 2018;154:1348–58.

    PubMed  Google Scholar 

  47. Campos-Rodriguez F, Martinez-Garcia MA, Martinez M, Duran-Cantolla J, Pena ML, Masdeu MJ, et al. Association between obstructive sleep apnea and cancer incidence in a large multicenter Spanish cohort. Am J Respir Crit Care Med. 2013;187:99–105.

    PubMed  Google Scholar 

  48. Christensen AS, Clark A, Salo P, Nymann P, Lange P, Prescott E, et al. Symptoms of sleep disordered breathing and risk of cancer: a prospective cohort study. Sleep. 2013;36:1429–35.

    PubMed  PubMed Central  Google Scholar 

  49. Marshall NS, Wong KK, Cullen SR, Knuiman MW, Grunstein RR. Sleep apnea and 20-year follow-up for all-cause mortality, stroke, and cancer incidence and mortality in the Busselton Health Study cohort. J Clin Sleep Med. 2014;10:355–62.

    PubMed  PubMed Central  Google Scholar 

  50. Chen JC, Hwang JH. Sleep apnea increased incidence of primary central nervous system cancers: a nationwide cohort study. Sleep Med. 2014;15:749–54.

    PubMed  Google Scholar 

  51. Kendzerska T, Leung RS, Hawker G, Tomlinson G, Gershon AS. Obstructive sleep apnea and the prevalence and incidence of cancer. CMAJ. 2014;186:985–92.

    PubMed  PubMed Central  Google Scholar 

  52. Chang WP, Liu ME, Chang WC, Yang AC, Ku YC, Pai JT, et al. Sleep apnea and the subsequent risk of breast cancer in women: a nationwide population-based cohort study. Sleep Med. 2014;15:1016–20.

    PubMed  Google Scholar 

  53. Palamaner Subash SG, Kumar AA, Cheskin LJ, Pancholy SB. Association between sleep-disordered breathing, obstructive sleep apnea, and cancer incidence: a systematic review and meta-analysis. Sleep Med. 2015;16:1289–94.

    Google Scholar 

  54. Zhang XB, Peng LH, Lyu Z, Jiang XT, Du YP. Obstructive sleep apnoea and the incidence and mortality of cancer: a meta-analysis. Eur J Cancer Care. 2017;26. https://doi.org/10.1111/ecc.12427.

  55. Chen C-Y, Hu J-M, Shen C-J, Chou Y-C, Tian Y-F, Chen Y-C, et al. Increased incidence of colorectal cancer with obstructive sleep apnea: a nationwide population-based cohort study. Sleep Med. 2019;66:15–20.

    PubMed  Google Scholar 

  56. Fang HF, Miao NF, Chen CD, Sithole T, Chung MH. Risk of cancer in patients with insomnia, parasomnia, and obstructive sleep apnea: a nationwide nested case-control study. J Cancer. 2015;6:1140–7.

    PubMed  PubMed Central  Google Scholar 

  57. Lin CL, Liu TC, Wang YN, Chung CH, Chien WC. The association between sleep disorders and the risk of colorectal cancer in patients: a population-based nested case-control study. In Vivo. 2019;33:573–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Nieto FJ, Peppard PE, Young T, Finn L, Hla KM, Farre R. Sleep-disordered breathing and cancer mortality: results from the Wisconsin Sleep Cohort Study. Am J Respir Crit Care Med. 2012;186:190–4.

    PubMed  PubMed Central  Google Scholar 

  59. Martinez-Garcia MA, Campos-Rodriguez F, Duran-Cantolla J, de la Pena M, Masdeu MJ, Gonzalez M, et al. Obstructive sleep apnea is associated with cancer mortality in younger patients. Sleep Med. 2014;15:742–8.

    PubMed  Google Scholar 

  60. Martinez-Garcia MA, Martorell-Calatayud A, Nagore E, Valero I, Selma MJ, Chiner E, et al. Association between sleep disordered breathing and aggressiveness markers of malignant cutaneous melanoma. Eur Respir J. 2014;43:1661–8.

    PubMed  Google Scholar 

  61. Gozal D, Ham SA, Mokhlesi B. Sleep apnea and cancer: analysis of a nationwide population sample. Sleep. 2016;39:1493–500.

    PubMed  PubMed Central  Google Scholar 

  62. Sillah A, Watson NF, Gozal D, Phipps AI. Obstructive sleep apnea severity and subsequent risk for cancer incidence. Prev Med Rep. 2019;15:100886.

    PubMed  PubMed Central  Google Scholar 

  63. Campos-Rodriguez F, Cruz-Medina A, Selma MJ, Rodriguez-de-la-Borbolla-Artacho, Sanchez-Vega A, Ripoll-Orts F, et al. Association between sleep-disordered breathing and breast cancer aggressiveness. PLoS ONE. 2018;13:e0207591.

    PubMed  PubMed Central  Google Scholar 

  64. Lee S, Kim BG, Kim JW, Lee KL, Koo DL, Nam H, et al. Obstructive sleep apnea is associated with an increased risk of colorectal neoplasia. Gastrointest Endosc. 2017;85:568–73.

    PubMed  Google Scholar 

  65. Torres M, Campillo N, Nonaka PN, Montserrat JM, Gozal D, Martinez-Garcia MA, et al. Aging reduces intermittent hypoxia-induced lung carcinoma growth in a mouse model of sleep apnea. Am J Respir Crit Care Med. 2018;198:1234–6.

    PubMed  PubMed Central  Google Scholar 

  66. Virchow R. Cellular pathology. As based upon physiological and pathological histology. Lecture XVI-Atheromatous affection of arteries. 1858. Nutr Rev. 1989;47:23–5.

    CAS  PubMed  Google Scholar 

  67. Gonzalez H, Hagerling C, Werb Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev. 2018;32:1267–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Palucka AK, Coussens LM. The basis of oncoimmunology. Cell. 2016;164:1233–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Farhood B, Najafi M, Mortezaee K. CD8(+) cytotoxic T lymphocytes in cancer immunotherapy: a review. J Cell Physiol. 2019;234:8509–21.

    CAS  PubMed  Google Scholar 

  70. Almendros I, Wang Y, Becker L, Lennon FE, Zheng J, Coats BR, et al. Intermittent hypoxia-induced changes in tumor-associated macrophages and tumor malignancy in a mouse model of sleep apnea. Am J Respir Crit Care Med. 2014;189:593–601.

    PubMed  PubMed Central  Google Scholar 

  71. Gaines J, Vgontzas AN, Fernandez-Mendoza J, Bixler EO. Obstructive sleep apnea and the metabolic syndrome: the road to clinically-meaningful phenotyping, improved prognosis, and personalized treatment. Sleep Med Rev. 2018;42:211–9.

    PubMed  PubMed Central  Google Scholar 

  72. Carreras A, Zhang SX, Peris E, Qiao Z, Wang Y, Almendros I, et al. Effect of resveratrol on visceral white adipose tissue inflammation and insulin sensitivity in a mouse model of sleep apnea. Int J Obes. 2015;39:418–23.

    CAS  Google Scholar 

  73. Zhang SX, Khalyfa A, Wang Y, Carreras A, Hakim F, Neel BA, et al. Sleep fragmentation promotes NADPH oxidase 2-mediated adipose tissue inflammation leading to insulin resistance in mice. Int J Obes. 2014;38:619–24.

    CAS  Google Scholar 

  74. Poroyko VA, Carreras A, Khalyfa A, Khalyfa AA, Leone V, Peris E, et al. Chronic sleep disruption alters gut microbiota, induces systemic and adipose tissue inflammation and insulin resistance in mice. Sci Rep. 2016;6:35405.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Carreras A, Zhang SX, Almendros I, Wang Y, Peris E, Qiao Z, et al. Resveratrol attenuates intermittent hypoxia-induced macrophage migration to visceral white adipose tissue and insulin resistance in male mice. Endocrinology. 2015;156:437–43.

    PubMed  Google Scholar 

  76. Moreno-Indias I, Torres M, Montserrat JM, Sanchez-Alcoholado L, Cardona F, Tinahones FJ, et al. Intermittent hypoxia alters gut microbiota diversity in a mouse model of sleep apnoea. Eur Respir J. 2015;45:1055–65.

    PubMed  Google Scholar 

  77. Hakim F, Wang Y, Zhang SX, Zheng J, Yolcu ES, Carreras A, et al. Fragmented sleep accelerates tumor growth and progression through recruitment of tumor-associated macrophages and TLR4 signaling. Cancer Res. 2014;74:1329–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Almendros I, Gileles-Hillel A, Khalyfa A, Wang Y, Zhang SX, Carreras A, et al. Adipose tissue macrophage polarization by intermittent hypoxia in a mouse model of OSA: effect of tumor microenvironment. Cancer Lett. 2015;361:233–9.

    CAS  PubMed  Google Scholar 

  79. Tiemessen MM, Jagger AL, Evans HG, van Herwijnen MJ, John S, Taams LS. CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages. Proc Natl Acad Sci USA. 2007;104:19446–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Gallego-Martin T, Farre R, Almendros I, Gonzalez-Obeso E, Obeso A. Chronic intermittent hypoxia mimicking sleep apnoea increases spontaneous tumorigenesis in mice. Eur Respir J. 2017;49:1602111.

    PubMed  Google Scholar 

  81. Cubillos-Zapata C, Avendano-Ortiz J, Hernandez-Jimenez E, Toledano V, Casas-Martin J, Varela-Serrano A, et al. Hypoxia-induced PD-L1/PD-1 crosstalk impairs T-cell function in sleep apnoea. Eur Respir J. 2017;50:1700833.

    PubMed  Google Scholar 

  82. Akbarpour M, Khalyfa A, Qiao Z, Gileles-Hillel A, Almendros I, Farre R, et al. Altered CD8+ T-Cell lymphocyte function and TC1 cell stemness contribute to enhanced malignant tumor properties in murine models of sleep apnea. Sleep. 2017;40. https://doi.org/10.1093/sleep/zsw040.

  83. Gaoatswe G, Kent BD, Corrigan MA, Nolan G, Hogan AE, McNicholas WT, et al. Invariant natural killer T cell deficiency and functional impairment in sleep apnea: links to cancer comorbidity. Sleep. 2015;38:1629–34.

    PubMed  PubMed Central  Google Scholar 

  84. Gharib SA, Seiger AN, Hayes AL, Mehra R, Patel SR. Treatment of obstructive sleep apnea alters transcriptional signatures in circulating leukocytes. Sleep. 2013;37:709–14.

    Google Scholar 

  85. White FM, Gatenby RA, Fischbach C. The physics of cancer. Cancer Res. 2019;79:2107–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Lu YC, Chu T, Hall MS, Fu DJ, Shi Q, Chiu A, et al. Physical confinement induces malignant transformation in mammary epithelial cells. Biomaterials. 2019;217:119307.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. DelNero P, Hopkins BD, Cantley LC, Fischbach C. Cancer metabolism gets physical. Sci Transl Med. 2018;10. https://doi.org/10.1126/scitranslmed.aaq1011.

  88. Northey JJ, Przybyla L, Weaver VM. Tissue force programs cell fate and tumor aggression. Cancer Discov. 2017;7:1224–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Roy CA, Gupta S, Chaturvedi PK, Kumar N, Pandey D. Mechanobiology of cancer stem cells and their niche. Cancer Microenviron. 2019;12:17–27.

    Google Scholar 

  90. Poltavets V, Kochetkova M, Pitson SM, Samuel MS. The role of the extracellular matrix and its molecular and cellular regulators in cancer cell plasticity. Front Oncol. 2018;8:431.

    PubMed  PubMed Central  Google Scholar 

  91. Rennhack JP, To B, Swiatnicki M, Dulak C, Ogrodzinski MP, Zhang Y, et al. Integrated analyses of murine breast cancer models reveal critical parallels with human disease. Nat Commun. 2019;10:3261.

    PubMed  PubMed Central  Google Scholar 

  92. Broders-Bondon F, Nguyen Ho-Bouldoires TH, Fernandez-Sanchez ME, Farge E. Mechanotransduction in tumor progression: the dark side of the force. J Cell Biol. 2018;217:1571–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Elosegui-Artola A, Andreu I, Beedle AEM, Lezamiz A, Uroz M, Kosmalska AJ, et al. Force triggers YAP nuclear entry by regulating transport across nuclear pores. Cell. 2017;171:1397–410.

    CAS  PubMed  Google Scholar 

  94. Isermann P, Lammerding J. Nuclear mechanics and mechanotransduction in health and disease. Curr Biol. 2013;23:R1113–21.

    CAS  PubMed  Google Scholar 

  95. Oudin MJ, Weaver VM. Physical and chemical gradients in the tumor microenvironment regulate tumor cell invasion, migration, and metastasis. Cold Spring Harb Symp Quant Biol. 2016;81:189–205.

    PubMed  Google Scholar 

  96. Kaushik N, Kim S, Suh Y, Lee SJ. Proinvasive extracellular matrix remodeling for tumor progression. Arch Pharm Res. 2019;42:40–7.

    CAS  PubMed  Google Scholar 

  97. Liu L, Zhang SX, Liao W, Farhoodi HP, Wong CW, Chen CC, et al. Mechanoresponsive stem cells to target cancer metastases through biophysical cues. Sci Transl Med. 2017;9:eaan2966.

    PubMed  PubMed Central  Google Scholar 

  98. Chandler EM, Saunders MP, Yoon CJ, Gourdon D, Fischbach C. Adipose progenitor cells increase fibronectin matrix strain and unfolding in breast tumors. Phys Biol. 2011;8:015008.

    CAS  PubMed  Google Scholar 

  99. Gilkes DM, Semenza GL, Wirtz D. Hypoxia and the extracellular matrix: drivers of tumour metastasis. Nat Rev Cancer. 2014;14:430–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Ju JA, Godet I, Ye IC, Byun J, Jayatilaka H, Lee SJ, et al. Hypoxia selectively enhances integrin alpha5beta1 receptor expression in breast cancer to promote metastasis. Mol Cancer Res. 2017;15:723–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Petrova V, Annicchiarico-Petruzzelli M, Melino G, Amelio I. The hypoxic tumour microenvironment. Oncogenesis. 2018;7:10.

    PubMed  PubMed Central  Google Scholar 

  102. Rausch LK, Netzer NC, Hoegel J, Pramsohler S. The linkage between breast cancer, hypoxia, and adipose tissue. Front Oncol. 2017;7:211.

    PubMed  PubMed Central  Google Scholar 

  103. Gilkes DM, Bajpai S, Wong CC, Chaturvedi P, Hubbi ME, Wirtz D, et al. Procollagen lysyl hydroxylase 2 is essential for hypoxia-induced breast cancer metastasis. Mol Cancer Res. 2013;11:456–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. He JY, Wei XH, Li SJ, Liu Y, Hu HL, Li ZZ, et al. Adipocyte-derived IL-6 and leptin promote breast cancer metastasis via upregulation of Lysyl Hydroxylase-2 expression. Cell Commun Signal. 2018;16:100.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Wang TH, Hsia SM, Shieh TM. Lysyl oxidase and the tumor microenvironment. Int J Mol Sci. 2016;18:E62. https://doi.org/10.3390/ijms18010062.

  106. Almendros I, Montserrat JM, Torres M, Dalmases M, Cabanas ML, Campos-Rodriguez F, et al. Intermittent hypoxia increases melanoma metastasis to the lung in a mouse model of sleep apnea. Respir Physiol Neurobiol. 2013;186:303–7.

    CAS  PubMed  Google Scholar 

  107. Marhuenda E, Campillo N, Gabasa M, Martinez-Garcia MA, Campos-Rodriguez F, Gozal D, et al. Effects of sustained and intermittent hypoxia on human lung cancer cells. Am J Respir Cell Mol Biol. 2019;61:540–4.

    CAS  PubMed  Google Scholar 

  108. Farre N, Otero J, Falcones B, Torres M, Jorba I, Gozal D, et al. Intermittent hypoxia mimicking sleep apnea increases passive stiffness of myocardial extracellular matrix. a multiscale study. Front Physiol. 2018;9:1143.

    PubMed  PubMed Central  Google Scholar 

  109. Mesarwi OA, Shin MK, Drager LF, Bevans-Fonti S, Jun JC, Putcha N, et al. Lysyl oxidase as a serum biomarker of liver fibrosis in patients with severe obesity and obstructive sleep apnea. Sleep. 2015;38:1583–91.

    PubMed  PubMed Central  Google Scholar 

  110. Xu CY, Li DJ, Wu CL, Lou HJ, Jiang HW, Ding GQ. Serum sLOX-1 levels are correlated with the presence and severity of obstructive sleep apnea. Genet Test Mol Biomarkers. 2015;19:272–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Cozzo AJ, Fuller AM, Makowski L. Contribution of adipose tissue to development of cancer. Compr Physiol. 2017;8:237–82.

    PubMed  PubMed Central  Google Scholar 

  112. Lin ChunTH, Kang L. Adipose extracellular matrix remodelling in obesity and insulin resistance. Biochem Pharmacol. 2016;119:8–16.

    PubMed  PubMed Central  Google Scholar 

  113. Lengyel E, Makowski L, DiGiovanni J, Kolonin MG. Cancer as a matter of fat: the crosstalk between adipose tissue and tumors. Trends Cancer. 2018;4:374–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Quail DF, Dannenberg AJ. The obese adipose tissue microenvironment in cancer development and progression. Nat Rev Endocrinol. 2019;15:139–54.

    PubMed  PubMed Central  Google Scholar 

  115. Druso JE, Fischbach C. Biophysical properties of extracellular matrix: linking obesity and cancer. Trends Cancer. 2018;4:271–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Thorn CE, Knight B, Pastel E, McCulloch LJ, Patel B, Shore AC, et al. Adipose tissue is influenced by hypoxia of obstructive sleep apnea syndrome independent of obesity. Diabetes Metab. 2017;43:240–7.

    CAS  PubMed  Google Scholar 

  117. Seo BR, Bhardwaj P, Choi S, Gonzalez J, Andresen Eguiluz RC, Wang K, et al. Obesity-dependent changes in interstitial ECM mechanics promote breast tumorigenesis. Sci Transl Med. 2015;7:301ra130.

    PubMed  PubMed Central  Google Scholar 

  118. Springer NL, Iyengar NM, Bareja R, Verma A, Jochelson M, Giri DD, et al. Obesity-associated extracellular matrix remodeling promotes a macrophage phenotype similar to tumor-associated macrophages. Am J Pathol. 2019;189:2019–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Chandler EM, Seo BR, Califano JP, Andresen Eguiluz RC, Lee JS, Yoon CJ, et al. Implanted adipose progenitor cells as physicochemical regulators of breast cancer. Proc Natl Acad Sci USA. 2012;109:9786–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Orecchioni S, Gregato G, Martin-Padura I, Reggiani F, Braidotti P, Mancuso P, et al. Complementary populations of human adipose CD34+ progenitor cells promote growth, angiogenesis, and metastasis of breast cancer. Cancer Res. 2013;73:5880–91.

    CAS  PubMed  Google Scholar 

  121. Farre R, Almendros I, Montserrat JM, Gozal D, Navajas D. Gas partial pressure in cultured cells: patho-physiological importance and methodological approaches. Front Physiol. 2018;9:1803.

    PubMed  PubMed Central  Google Scholar 

  122. Broutier L, Mastrogiovanni G, Verstegen MM, Francies HE, Gavarro LM, Bradshaw CR, et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening. Nat Med. 2017;23:1424–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Getova VE, van Dongen JA, Brouwer LA, Harmsen MC. Adipose tissue-derived ECM hydrogels and their use as 3D culture scaffold. Artif Cells Nanomed Biotechnol. 2019;47:1693–701.

    CAS  PubMed  Google Scholar 

  124. Kumar V, Varghese S. Ex vivo tumor-on-a-chip platforms to study intercellular interactions within the tumor microenvironment. Adv Healthc Mater. 2019;8:e1801198.

    PubMed  Google Scholar 

  125. Kingsley DM, Roberge CL, Rudkouskaya A, Faulkner DE, Barroso M, Intes X, et al. Laser-based 3D bioprinting for spatial and size control of tumor spheroids and embryoid bodies. Acta Biomater. 2019;95:357–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Ray A, Morford RK, Ghaderi N, Odde DJ, Provenzano PP. Dynamics of 3D carcinoma cell invasion into aligned collagen. Integr Biol. 2018;10:100–12.

    CAS  Google Scholar 

  127. Jorba I, Uriarte JJ, Campillo N, Farre R, Navajas D. Probing micromechanical properties of the extracellular matrix of soft tissues by atomic force microscopy. J Cell Physiol. 2016;232:19–26.

    PubMed  Google Scholar 

  128. Colin-York H, Javanmardi Y, Barbieri L, Li D, Korobchevskaya K, Guo Y, et al. Spatiotemporally super-resolved volumetric traction force microscopy. Nano Lett. 2019;19:4427–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Donnelly D, Bajaj S, Yu J, Hsu M, Balar A, Pavlick A, et al. The complex relationship between body mass index and response to immune checkpoint inhibition in metastatic melanoma patients. J Immunother Cancer. 2019;7:222.

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported in part by the Spanish Ministry of Economy and Competitiveness (SAF2017-85574-R) and Generalitat de Catalunya (Programa CERCA). IA is supported by SEPAR (595/2017) and DG by National Institutes of Health grants HL130984 and HL140548.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Gozal.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almendros, I., Martinez-Garcia, M.A., Farré, R. et al. Obesity, sleep apnea, and cancer. Int J Obes 44, 1653–1667 (2020). https://doi.org/10.1038/s41366-020-0549-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-020-0549-z

This article is cited by

Search

Quick links