Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Clinical research

Morbidly obese subjects show increased serum sulfide in proportion to fat mass

Abstract

Background and objectives

The importance of hydrogen sulfide is increasingly recognized in the pathophysiology of obesity and type 2 diabetes in animal models. Very few studies have evaluated circulating sulfides in humans, with discrepant results. Here, we aimed to investigate serum sulfide levels according to obesity.

Subjects and methods

Serum sulfide levels were analyzed, using a selective fluorescent probe, in two independent cohorts [cross-sectionally in discovery (n = 139) and validation (n = 71) cohorts, and longitudinally in 82 participants from discovery cohort]. In the validation cohort, blood gene expression of enzymes contributing to H2S generation and consumption were also measured.

Results

In the discovery cohort, serum sulfide concentration was significantly increased in subjects with morbid obesity at baseline and follow-up, and positively correlated with BMI and fat mass, but negatively with total cholesterol, haemoglobin, serum ferritin, iron and bilirubin after adjusting by age, gender and fat mass. Fat mass (β = 0.51, t = 3.67, p < 0.0001) contributed independently to age-, gender-, insulin sensitivity- and BMI-adjusted serum sulfide concentration variance. Importantly, receiver operating characteristic analysis demonstrated the relevance of fat mass predicting serum sulfide levels, which was replicated in the validation cohort. In addition, serum sulfide concentration was decreased in morbidly obese subjects with impaired compared to those with normal fasting glucose. Longitudinally, weight gain resulted in increased serum sulfide concentration, whereas weight loss had opposite effects, being the percent change in serum sulfide positively correlated with the percent change in BMI and waist circumference, but negatively with bilirubin. Whole blood CBS, CTH, MPST, SQOR, TST and MPO gene expression was not associated to obesity or serum sulfide concentration.

Conclusions

Altogether these data indicated that serum sulfide concentrations were increased in subjects with morbid obesity in proportion to fat mass and inversely associated with circulating markers of haem degradation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Serum sulfide in association with obesity, fat mass and fasting glucose in cohort 1.
Fig. 2: Serum sulfide in association with obesity and fat mass in cohort 2.

Similar content being viewed by others

References

  1. Whiteman M, Le Trionnaire SL, Chopra M, Fox B, Whatmore J. Emerging role of hydrogen sulfide in health and disease: critical appraisal of biomarkers and pharmacological tools. Clin. Sci. 2011;121:459–88.

    CAS  Google Scholar 

  2. Yang CT, Chen L, Xu S, Day JJ, Li X, Xian M. Recent development of hydrogen sulfide releasing/stimulating reagents and their potential applications in cancer and glycometabolic disorders. Front. Pharmacol. 2017;8:664.

    PubMed  PubMed Central  Google Scholar 

  3. Kamoun P. Endogenous production of hydrogen sulfide in mammals. Amino Acids. 2004;26:243–54.

    CAS  PubMed  Google Scholar 

  4. Kuo MM, Kim DH, Jandu S, Bergman Y, Tan S, Wang H, et al. MPST but not CSE is the primary regulator of hydrogen sulfide production and function in the coronary artery. Am J Physiol. 2016;310:H71–9.

    Google Scholar 

  5. Landry AP, Ballou DP, Banerjee R. Modulation of catalytic promiscuity during hydrogen sulfide oxidation. ACS Chem Biol. 2018;13:1651–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Pálinkás Z, Furtmüller PG, Nagy A, Jakopitsch C, Pirker KF, Magierowski M, et al. Interactions of hydrogen sulfide with myeloperoxidase. Br. J. Pharmacol. 2015;172:1516–32.

    PubMed  Google Scholar 

  7. Morton NM, Beltram J, Carter RN, Michailidou Z, Gorjanc G, McFadden C, et al. Genetic identification of thiosulfate sulfurtransferase as an adipocyte-expressed antidiabetic target in mice selected for leanness. Nat Med. 2016;22:771–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Whiteman M, Gooding KM, Whatmore JL, Ball CI, Mawson D, Skinner K, et al. Adiposity is a major determinant of plasma levels of the novel vasodilator hydrogen sulphide. Diabetologia. 2010;53:1722–6.

    CAS  PubMed  Google Scholar 

  9. Cai J, Shi X, Wang H, Fan J, Feng Y, Lin X, et al. Cystathionine γ lyase–hydrogen sulfide increases peroxisome proliferator-activated receptor γ activity by sulfhydration at C139 site thereby promoting glucose uptake and lipid storage in adipocytes. Biochim Biophys Acta. 2016;1861:419–29.

    CAS  PubMed  Google Scholar 

  10. Geng B, Cai B, Liao F, Zheng Y, Zeng Q, Fan X. et al. Increase or decrease hydrogen sulfide exert opposite lipolysis, but reduce global insulin resistance in high fatty diet induced obese mice. PLoS ONE. 2013;8:e73892.

    PubMed  PubMed Central  Google Scholar 

  11. Yang G, Ju Y, Fu M, Zhang Y, Pei Y, Racine M, et al. Cystathionine gamma-lyase/hydrogen sulfide system is essential for adipogenesis and fat mass accumulation in mice. Biochim Biophys Acta. 2018;1863:165–76.

    CAS  Google Scholar 

  12. Suzuki K, Sagara M, Aoki C, Tanaka S, Aso Y. Clinical implication of plasma hydrogen sulfide levels in Japanese patients with type 2 diabetes. Intern Med. 2017;56:17–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Association AD. 2. Classification and diagnosis of diabetes: Standards of medical care in diabetes—2019. Diabetes Care. 2019;42:S13–28.

    Google Scholar 

  14. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–9.

    CAS  PubMed  Google Scholar 

  15. Ditrói T, Nagy A, Martinelli D, Rosta A, Kožich V, Nagy P. Comprehensive analysis of how experimental parameters affect H2S measurements by the monobromobimane method. Free Radic Biol Med. 2019;136:146–58.

    PubMed  Google Scholar 

  16. Choi SA, Park CS, Kwon OS, Giong HK, Lee JS, Ha TH. et al. Structural effects of naphthalimide-based fluorescent sensor for hydrogen sulfide and imaging in live zebrafish. Sci Rep. 2016;6:26203

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Vitvitsky V, Yadav PK, Kurthen A, Banerjee R. Sulfide oxidation by a noncanonical pathway in red blood cells generates thiosulfate and polysulfides. J Biol Chem. 2015;290:8310–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Saravanan G, Ponmurugan P, Begum MS. Effect of S-allylcysteine, a sulphur containing amino acid on iron metabolism in streptozotocin induced diabetic rats. J Trace Elem Med Biol. 2013;27:143–7.

    CAS  PubMed  Google Scholar 

  19. Yu S, Yan Z, Che N, Zhang X, Ge R. Impact of carbon monoxide/heme oxygenase on hydrogen sulfide/cystathionine-γ-lyase pathway in the pathogenesis of allergic rhinitis in guinea pigs. Otolaryngol Neck Surg. 2015;152:470–6.

    Google Scholar 

  20. Hishiki T, Yamamoto T, Morikawa T, Kubo A, Kajimura M, Suematsu M. Carbon monoxide: impact on remethylation/transsulfuration metabolism and its pathophysiologic implications. J Mol Med. 2012;90:245–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Bin GuoS, Duan ZJ, Wang QM, Zhou Q, Li Q, Sun XY. Endogenous carbon monoxide downregulates hepatic cystathionine-γ-lyase in rats with liver cirrhosis. Exp Ther Med. 2015;10:2039–46.

    Google Scholar 

  22. Galmozzi A, Kok BP, Kim AS, Montenegro-Burke JR, Lee JY, Spreafico R, et al. PGRMC2 is an intracellular haem chaperone critical for adipocyte function. Nature. 2019;576:138–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Moreno-Navarrete JM, Rodríguez A, Ortega F, Becerril S, Girones J, Sabater-Masdeu M, et al. Heme biosynthetic pathway is functionally linked to adipogenesis via mitochondrial respiratory activity. Obesity. 2017;25:1723–33.

    CAS  PubMed  Google Scholar 

  24. Nunes-Souza N, Dias-Júnior NM, Eleutério-Silva MA, Ferreira-Neves VP, Moura FA, Alenina N, et al. 3-Amino-1,2,4-triazole induces quick and strong fat loss in mice with high fat-induced metabolic syndrome. Oxid Med Cell Longev. 2020;2020. https://doi.org/10.1155/2020/3025361.

  25. Takei R, Inoue T, Sonoda N, Kohjima M, Okamoto M, Sakamoto R, et al. Bilirubin reduces visceral obesity and insulin resistance by suppression of inflammatory cytokines. PLoS ONE. 2019;14. https://doi.org/10.1371/journal.pone.0223302.

  26. Stec DE, John K, Trabbic CJ, Luniwal A, Hankins MW, Baum J, et al. Bilirubin binding to PPARα inhibits lipid accumulation. PLoS ONE. 2016;11. https://doi.org/10.1371/journal.pone.0153427.

  27. Gordon DM, Neifer KL, Hamoud A-RA, Hawk CF, Nestor-Kalinoski AL, Miruzzi SA, et al. Bilirubin remodels murine white adipose tissue by reshaping mitochondrial activity and the coregulator profile of peroxisome proliferator-activated receptor α. J Biol Chem. 2020;295. https://doi.org/10.1074/jbc.RA120.013700.

  28. Cimini FA, Arena A, Barchetta I, Tramutola A, Ceccarelli V, Lanzillotta C, et al. Reduced biliverdin reductase-A levels are associated with early alterations of insulin signaling in obesity. Biochim Biophys Acta. 2019;1865:1490–501.

    CAS  Google Scholar 

  29. Gordon DM, Adeosun SO, Ngwudike SI, Anderson CD, Hall JE, Hinds TD, et al. CRISPR Cas9-mediated deletion of biliverdin reductase A (BVRA) in mouse liver cells induces oxidative stress and lipid accumulation. Arch Biochem Biophys. 2019;672. https://doi.org/10.1016/j.abb.2019.108072.

  30. Zhao L, Zhang X, Shen Y, Fang X, Wang Y, Wang F. Obesity and iron deficiency: a quantitative meta-analysis. Obes. Rev. 2015;16:1081–93.

    CAS  PubMed  Google Scholar 

  31. Mani S, Li H, Untereiner A, Wu L, Yang G, Austin RC, et al. Decreased endogenous production of hydrogen sulfide accelerates atherosclerosis. Circulation. 2013;127:2523–34.

    CAS  PubMed  Google Scholar 

  32. Rose P, Moore PK, Zhu YZ. H2S biosynthesis and catabolism: new insights from molecular studies. Cell Mol Life Sci. 2017;74:1391–412.

    CAS  PubMed  Google Scholar 

  33. Szijártó IA, Markó L, Filipovic MR, Miljkovic JL, Tabeling C, Tsvetkov D, et al. Cystathionine γ-lyase-produced hydrogen sulfide controls endothelial no bioavailability and blood pressure. Hypertension. 2018;71:1210–7.

    PubMed  Google Scholar 

  34. Bearden SE, Beard RS, Pfau JC. Extracellular transsulfuration generates hydrogen sulfide from homocysteine and protects endothelium from redox stress. Am J Physiol. 2010;299:H1568–76.

    CAS  Google Scholar 

  35. Hwang SY, Sarna LK, Siow YL, Karmin O. High-fat diet stimulates hepatic cystathionine β-synthase and cystathionine γ-lyase expression. Can J Physiol Pharmacol. 2013;91:913–9.

    CAS  PubMed  Google Scholar 

  36. Yang Y, Wang Y, Sun J, Zhang J, Guo H, Shi Y, et al. Dietary methionine restriction reduces hepatic steatosis and oxidative stress in high-fat-fed mice by promoting H2S production. Food Funct. 2019;10:61–77.

    CAS  PubMed  Google Scholar 

  37. Hine C, Harputlugil E, Zhang Y, Ruckenstuhl C, Lee BC, Brace L, et al. Endogenous hydrogen sulfide production is essential for dietary restriction benefits. Cell. 2015;160:132–44.

    CAS  PubMed  Google Scholar 

  38. Norris EJ, Culberson CR, Narasimhan S, Clemens MG. The liver as a central regulator of hydrogen sulfide. Shock. 2011;36:242–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang J, Minkler P, Grove D, Wang R, Willard B, Dweik R, et al. Non-enzymatic hydrogen sulfide production from cysteine in blood is catalyzed by iron and vitamin B6. Commun Biol. 2019;2:1–14.

    CAS  Google Scholar 

  40. Carter RN, Morton NM. Cysteine and hydrogen sulphide in the regulation of metabolism: Insights from genetics and pharmacology. J Pathol. 2016;238:321–32.

    CAS  PubMed  Google Scholar 

  41. Elshorbagy AK, KoziC HV, David Smith A, Refsum H. Cysteine and obesity: consistency of the evidence across epidemiologic, animal and cellular studies. Curr Opin Clin Nutr Metab Care. 2012;15:49–57.

    CAS  PubMed  Google Scholar 

  42. Giustarini D, Dalle-Donne I, Lorenzini S, Milzani A, Rossi R. Age-related influence on thiol, disulfide, and protein-mixed disulfide levels in human plasma. J Gerontol A Biol Sci Med Sci. 2006;61:1030–8.

    PubMed  Google Scholar 

  43. Aasheim ET, Elshorbagy AK, My Diep L, Søvik TT, Mala T, Valdivia-Garcia M, et al. Effect of bariatric surgery on sulphur amino acids and glutamate. Br J Nutr. 2011;106:432–40.

    CAS  PubMed  Google Scholar 

  44. Rey FE, Gonzalez MD, Cheng J, Wu M, Ahern PP, Gordon JI. Metabolic niche of a prominent sulfate-reducing human gut bacterium. Proc Natl Acad Sci USA. 2013;110:13582–7.

    CAS  PubMed  Google Scholar 

  45. Bäckhed F, Manchester JK, Semenkovich CF, Gordon JI. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci USA. 2007;104:979–84.

    PubMed  Google Scholar 

  46. Shen X, Carlström M, Borniquel S, Jädert C, Kevil CG, Lundberg JO. Microbial regulation of host hydrogen sulfide bioavailability and metabolism. Free Radic Biol Med. 2013;60:195–200.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hildebrandt MA, Hoffmann C, Sherrill-Mix SA, Keilbaugh SA, Hamady M, Chen YY, et al. High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology. 2009;137:1716.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Petersen C, Bell R, Klag KA, Lee S-H, Soto R, Ghazaryan A, et al. T cell-mediated regulation of the microbiota protects against obesity. Science. 2019;80-:365:eaat9351.

    Google Scholar 

  49. Kaneko Y, Kimura Y, Kimura H, Niki I. L-cysteine inhibits insulin release from the pancreatic β-cell: Possible involvement of metabolic production of hydrogen sulfide, a novel gasotransmitter. Diabetes. 2006;55:1391–7.

    CAS  PubMed  Google Scholar 

  50. Zhang L, Yang G, Untereiner A, Ju Y, Wu L, Wang R. Hydrogen sulfide impairs glucose utilization and increases gluconeogenesis in hepatocytes. Endocrinology. 2013;154:114–26.

    CAS  PubMed  Google Scholar 

  51. Rajpal S, Katikaneni P, Deshotels M, Pardue S, Glawe J, Shen X, et al. Total sulfane sulfur bioavailability reflects ethnic and gender disparities in cardiovascular disease. Redox Biol. 2018;15:480–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Guo R, Wu Z, Jiang J, Liu C, Wu B, Li X, et al. New mechanism of lipotoxicity in diabetic cardiomyopathy: deficiency of Endogenous H2S Production and ER stress. Mech Ageing Dev. 2017;162:46–52.

    CAS  PubMed  Google Scholar 

  53. Jeddi S, Gheibi S, Kashfi K, Carlström M, Ghasemi A. Protective effect of intermediate doses of hydrogen sulfide against myocardial ischemia-reperfusion injury in obese type 2 diabetic rats. Life Sci. 2020;256. https://doi.org/10.1016/j.lfs.2020.117855.

  54. Gomez CB, de la Cruz SH, Medina-Terol GJ, Beltran-Ornelas JH, Sánchez-López A, Silva-Velasco DL, et al. Chronic administration of NaHS and L-Cysteine restores cardiovascular changes induced by high-fat diet in rats. Eur J Pharmacol. 2019;863. https://doi.org/10.1016/j.ejphar.2019.172707.

  55. Shen X, Peter EA, Bir S, Wang R, Kevil CG. Analytical measurement of discrete hydrogen sulfide pools in biological specimens. Free Radic Biol Med. 2012;52:2276–83.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was partially supported by research grants PI15/01934, PI16/01173 and PI19/01712 from the Instituto de Salud Carlos III from Spain and VII Spanish Diabetes Association grants to Basic Diabetes Research Projects led by young researchers, CIBEROBN Fisiopatología de la Obesidad y Nutrición is an initiative from the Instituto de Salud Carlos III and Fondo Europeo de Desarrollo Regional (FEDER) from Spain. Project ThinkGut (EFA345/19) 65% co-financed by the European Regional Development Fund (ERDF) through the Interreg V-A Spain-France-Andorra programme (POCTEFA 2014-2020). We acknowledge the technical assistance of Oscar Rovira (IdIBGi). We want to particularly acknowledge the patients, the FATBANK platform promoted by the CIBEROBN and the IDIBGI Biobank (Biobanc IDIBGI, B.0000872), integrated in the Spanish National Biobanks’ Network, for their collaboration and coordination.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to José Manuel Fernández-Real or José María Moreno-Navarrete.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Comas, F., Latorre, J., Ortega, F. et al. Morbidly obese subjects show increased serum sulfide in proportion to fat mass. Int J Obes 45, 415–426 (2021). https://doi.org/10.1038/s41366-020-00696-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-020-00696-z

Search

Quick links