Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Behavior, Psychology and Sociology

The interrelationship of body mass index with gray matter volume and resting-state functional connectivity of the hypothalamus

Abstract

Background

The hypothalamus plays an important role in regulating body weight through its interactions with multiple brain circuits involved in distinct aspects of feeding behavior. Yet, how hypothalamic gray matter volume (GMV) and connectivity may be related to individual differences in body weight remains unclear. We tested the hypothesis that the hypothalamus shows enhanced resting-state functional connectivity (rsFC) with regions of the reward, motivation, and motor circuits in positive correlation with body mass index (BMI) and the opposite with those associated with inhibitory control. We further examined the interdependent relationships between hypothalamic GMV, connectivity, and body weight.

Methods

Using seed-based rsFC and voxel-based morphometry analyses, we examined the relationship between the rsFC and GMV of the hypothalamus and BMI in 105 healthy humans. Additionally, we employed mediation analyses to characterize the inter-relationships between hypothalamic connectivity, GMV, and BMI.

Results

A whole-brain multiple regression showed that BMI was positively correlated with hypothalamic rsFC with the insula, thalamus, globus pallidus, and cerebellum, and negatively correlated with hypothalamic rsFC with the superior parietal lobule. Thus, higher BMI was associated with enhanced hypothalamic connectivity with regions involved in motivated feeding and reduced connectivity with those in support of cognitive control of food intake. A second whole-brain multiple regression revealed a positive correlation between hypothalamic GMV and the hypothalamus–posterior insula connectivity. Finally, the relationship between hypothalamic GMV and BMI was significantly and bidirectionally mediated by the hypothalamus–posterior insula connectivity.

Conclusions

The current findings suggest that the hypothalamus differentially interacts with the motivation, motor, and control circuits to regulate BMI. We further found evidence for the interdependence of hypothalamic structure, function, and body weight, which provides potential insights into the brain mechanisms of obesity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Corbett SW, Keesey RE. Energy balance of rats with lateral hypothalamic lesions. Am J Physiol Metab. 1982;242:E273–9. https://doi.org/10.1152/ajpendo.1982.242.4.E273.

    Article  CAS  Google Scholar 

  2. Zigman JM, Elmquist JK. Minireview: from anorexia to obesity—the Yin and Yang of body weight control. Endocrinology. 2003;144:3749–56. https://doi.org/10.1210/en.2003-0241.

    Article  CAS  PubMed  Google Scholar 

  3. Volkow ND, Wang GJ, Baler RD. Reward, dopamine and the control of food intake: implications for obesity. Trends Cogn Sci. 2011;15:37–46. https://doi.org/10.1016/j.tics.2010.11.001.

    Article  CAS  PubMed  Google Scholar 

  4. Kullmann S, Heni M, Linder K, Zipfel S, Häring HU, Veit R, et al. Resting-state functional connectivity of the human hypothalamus. Hum Brain Mapp. 2014;35:6088–96. https://doi.org/10.1002/hbm.22607.

    Article  PubMed  Google Scholar 

  5. Contreras-Rodríguez O, Vilar-López R, Andrews ZB, Navas JF, Soriano-Mas C, Verdejo-García A. Altered cross-talk between the hypothalamus and non-homeostatic regions linked to obesity and difficulty to lose weight. Sci Rep. 2017;7:1–9. https://doi.org/10.1038/s41598-017-09874-y.

    Article  CAS  Google Scholar 

  6. Lips MA, Wijngaarden MA, van der Grond J, van Buchem MA, de Groot GH, Rombouts SA, et al. Resting-state functional connectivity of brain regions involved in cognitive control, motivation, and reward is enhanced in obese females. Am J Clin Nutr. 2014;100:524–31. https://doi.org/10.3945/ajcn.113.080671.

    Article  CAS  PubMed  Google Scholar 

  7. Martín-Pérez C, Contreras-Rodríguez O, Vilar-López R, Verdejo-García A. Hypothalamic networks in adolescents with excess weight: stress-related connectivity and associations with emotional eating. J Am Acad Child Adolesc Psychiatry. 2019;58:211–220.e5. https://doi.org/10.1016/j.jaac.2018.06.039.

    Article  PubMed  Google Scholar 

  8. Geha P, Cecchi G, Todd Constable R, Abdallah C, Small DM. Reorganization of brain connectivity in obesity. Hum Brain Mapp. 2017;38:1403–20. https://doi.org/10.1002/hbm.23462.

    Article  PubMed  Google Scholar 

  9. Wright H, Li X, Fallon NB, Crookall R, Giesbrecht T, Thomas A, et al. Differential effects of hunger and satiety on insular cortex and hypothalamic functional connectivity. Eur J Neurosci. 2016;43:1181–9. https://doi.org/10.1111/ejn.13182.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kilpatrick LA, Coveleskie K, Connolly L, Labus JS, Ebrat B, Stains J, et al. Influence of sucrose ingestion on brainstem and hypothalamic intrinsic oscillations in lean and obese women. Gastroenterology. 2014;146:1212–21. https://doi.org/10.1053/j.gastro.2014.01.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hinkle W, Cordell M, Leibel R, Rosenbaum M, Hirsch J. Effects of reduced weight maintenance and leptin repletion on functional connectivity of the hypothalamus in obese humans. PLoS ONE. 2013;8. https://doi.org/10.1371/journal.pone.0059114.

  12. Horstmann A, Busse FP, Mathar D, Müller K, Lepsien J, Schlögl H, et al. Obesity-related differences between women and men in brain structure and goal-directed behavior. Front Hum Neurosci. 2011;5:1–9. https://doi.org/10.3389/fnhum.2011.00058.

    Article  Google Scholar 

  13. Yao L, Li W, Dai Z, Dong C. Eating behavior associated with gray matter volume alternations: a voxel based morphometry study. Appetite. 2016;96:572–9. https://doi.org/10.1016/j.appet.2015.10.017.

    Article  PubMed  Google Scholar 

  14. Titova OE, Hjorth OC, Schiöth HB, Brooks SJ. Anorexia nervosa is linked to reduced brain structure in reward and somatosensory regions: a meta-analysis of VBM studies. BMC Psychiatry. 2013;13. https://doi.org/10.1186/1471-244X-13-110.

  15. Boghi A, Sterpone S, Sales S, D’Agata F, Bradac GB, Zullo G, et al. In vivo evidence of global and focal brain alterations in anorexia nervosa. Psychiatry Res Neuroimaging. 2011;192:154–9. https://doi.org/10.1016/j.pscychresns.2010.12.008.

    Article  Google Scholar 

  16. Pinos H, Pérez-Izquierdo MA, Carrillo B, Collado P. Effects of undernourishment on the hypothalamic orexinergic system. Physiol Behav. 2011;102:17–21. https://doi.org/10.1016/j.physbeh.2010.09.023.

    Article  CAS  PubMed  Google Scholar 

  17. Valdearcos M, Robblee MM, Benjamin DI, Nomura DK, Xu AW, Koliwad SK. Microglia dictate the impact of saturated fat consumption on hypothalamic inflammation and neuronal function. Cell Rep. 2014;9:2124–38. https://doi.org/10.1016/j.celrep.2014.11.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage. 2012;59:2142–54. https://doi.org/10.1016/j.neuroimage.2011.10.018.

    Article  PubMed  Google Scholar 

  19. Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH. An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage. 2003;19:1233–9. https://doi.org/10.1016/S1053-8119(03)00169-1.

    Article  PubMed  Google Scholar 

  20. MacKinnon DP, Fairchild AJ, Fritz MS. Mediation analysis. Annu Rev Psychol. 2007;58:593–614. https://doi.org/10.1146/annurev.psych.58.110405.085542.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Le TM, Zhornitsky S, Wang W, Ide J, Zhang S, Li CR. Posterior cingulate cortical response to active avoidance mediates the relationship between punishment sensitivity and problem drinking. J Neurosci. 2019;39:6354–64. https://doi.org/10.1523/jneurosci.0508-19.2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rosseel Y. Lavaan: an R package for structural equation modeling and more. J Stat Softw. 2012;48:1–36. https://doi.org/10.18637/jss.v048.i02.

    Article  Google Scholar 

  23. Boehm I, Geisler D, King JA, Ritschel F, Seidel M, Deza Araujo Y, et al. Increased resting state functional connectivity in the fronto-parietal and default mode network in anorexia nervosa. Front Behav Neurosci. 2014;8:1–11. https://doi.org/10.3389/fnbeh.2014.00346.

    Article  Google Scholar 

  24. Melasch J, Rullmann M, Hilbert A, Luthardt J, Becker GA, Patt M, et al. The central nervous norepinephrine network links a diminished sense of emotional well-being to an increased body weight. Int J Obes. 2016;40:779–87. https://doi.org/10.1038/ijo.2015.216.

    Article  CAS  Google Scholar 

  25. Siep N, Roefs A, Roebroeck A, Havermans R, Bonte ML, Jansen A. Hunger is the best spice: an fMRI study of the effects of attention, hunger and calorie content on food reward processing in the amygdala and orbitofrontal cortex. Behav Brain Res. 2009;198:149–58. https://doi.org/10.1016/j.bbr.2008.10.035.

    Article  PubMed  Google Scholar 

  26. Parigi A, Gautier J-F, Chen K, Salbe AD, Ravussin E, Reiman E, et al. Neuroimaging and obesity: mapping the brain responses to hunger and satiation in humans using positron emission tomography. Ann NY Acad Sci. 2006;967:389–97. https://doi.org/10.1111/j.1749-6632.2002.tb04294.x.

    Article  Google Scholar 

  27. Sescousse G, Caldú X, Segura B, Dreher JC. Processing of primary and secondary rewards: a quantitative meta-analysis and review of human functional neuroimaging studies. Neurosci Biobehav Rev. 2013;37:681–96. https://doi.org/10.1016/j.neubiorev.2013.02.002.

    Article  PubMed  Google Scholar 

  28. Fletcher PC, Napolitano A, Skeggs A, Miller SR, Delafont B, Cambridge VC, et al. Distinct modulatory effects of satiety and sibutramine on brain responses to food images in humans: a double dissociation across hypothalamus, amygdala, and ventral striatum. J Neurosci. 2010;30:14346–55. https://doi.org/10.1523/JNEUROSCI.3323-10.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. van Opstal AM, Hafkemeijer A, van den Berg-Huysmans AA, Hoeksma M, Blonk C, Pijl H, et al. Brain activity and connectivity changes in response to glucose ingestion. Nutr Neurosci. 2018;0:1–8. https://doi.org/10.1080/1028415X.2018.1477538.

    Article  Google Scholar 

  30. Van Opstal AM, Akintola AA, Van Der Elst M, Westendorp RG, Pijl H, Van Heemst D, et al. Effects of intranasal insulin application on the hypothalamic BOLD response to glucose ingestion. Sci Rep. 2017;7:1–7. https://doi.org/10.1038/s41598-017-13818-x.

    Article  CAS  Google Scholar 

  31. Matsuda M, Liu Y, Mahankali S, Pu Y, Mahankali A, Wang J, et al. Altered hypothalamic function in response to glucose ingestion in obese humans. Diabetes. 1999;48:1801–6. https://doi.org/10.2337/diabetes.48.9.1801.

    Article  CAS  PubMed  Google Scholar 

  32. Jastreboff AM, Lacadie C, Seo D, Kubat J, Van Name MA, Giannini C, et al. Leptin is associated with exaggerated brain reward and emotion responses to food images in adolescent obesity. Diabetes Care. 2014;37:3061–8. https://doi.org/10.2337/dc14-0525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cauda F, D’Agata F, Sacco K, Duca S, Geminiani G, Vercelli A. Functional connectivity of the insula in the resting brain. Neuroimage. 2011;55:8–23. https://doi.org/10.1016/j.neuroimage.2010.11.049.

    Article  PubMed  Google Scholar 

  34. Gardini S, Venneri A. Reduced grey matter in the posterior insula as a structural vulnerability or diathesis to addiction. Brain Res Bull. 2012;87:205–11. https://doi.org/10.1016/j.brainresbull.2011.11.021.

    Article  PubMed  Google Scholar 

  35. Naqvi NH, Rudrauf D, Damasio H, Bechara A. Damage to the insula disrupts addiction to cigarette smoking. Science. 2007;315:531–4. https://doi.org/10.1126/science.1135926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lemaire J-J, Frew AJ, McArthur D, Gorgulho AA, Alger JR, Salomon N, et al. White matter connectivity of human hypothalamus. Brain Res. 2011;1371:43–64. https://doi.org/10.1016/j.brainres.2010.11.072.

    Article  CAS  PubMed  Google Scholar 

  37. Nakahara K, Fukui K, Murakami N. Involvement of thalamic paraventricular nucleus in the anticipatory reaction under food restriction in the rat. J Vet Med Sci. 2004;66:1297–1300. https://doi.org/10.1292/jvms.66.1297.

    Article  PubMed  Google Scholar 

  38. Ward RD, Taylor K, Parnaudeau S, Bolkan SS, Kellendonk C, Balsam PD. Mediodorsal thalamus hypofunction impairs flexible goal-directed behavior. Biol Psychiatry. 2014;77:445–53. https://doi.org/10.1016/j.biopsych.2014.03.020

    Article  PubMed  PubMed Central  Google Scholar 

  39. Igelstrom KM, Herbison AE, Hyland BI. Enhanced c-Fos expression in superior colliculus, paraventricular thalamus and septum during learning of cue-reward association. Neuroscience. 2010;168:706–14. https://doi.org/10.1016/j.neuroscience.2010.04.018

    Article  CAS  PubMed  Google Scholar 

  40. Minamimoto T, Hori Y, Kimura M. Complementary process to response bias in the centromedian nucleus of the thalamus. Science. 2005;308:1798–801. https://doi.org/10.1126/science.1109154

    Article  CAS  PubMed  Google Scholar 

  41. Wenderoth N, Toni I, Bedeleem S, Debaere F, Swinnen SP. Information processing in human parieto-frontal circuits during goal-directed bimanual movements. Neuroimage. 2006;31:264–78. https://doi.org/10.1016/j.neuroimage.2005.11.033

    Article  PubMed  Google Scholar 

  42. Schur EA, Kleinhans NM, Goldberg J, Buchwald D, Schwartz MW, Maravilla K. Activation in brain energy regulation and reward centers by food cues varies with choice of visual stimulus. Int J Obes. 2009;33:653–61. https://doi.org/10.1038/ijo.2009.56

    Article  CAS  Google Scholar 

  43. Frank GKW, Oberndorfer TA, Simmons AN, Paulus MP, Fudge JL, Yang TT, et al. Sucrose activates human taste pathways differently from artificial sweetener. Neuroimage. 2008;39:1559–69. https://doi.org/10.1016/j.neuroimage.2007.10.061.

    Article  PubMed  Google Scholar 

  44. Meguid MM, Fetissov SO, Varma M, Sato T, Zhang L, Laviano A, et al. Hypothalamic dopamine and serotonin in the regulation of food intake. Nutrition. 2000;16:843–57. https://doi.org/10.1016/S0899-9007(00)00449-4.

    Article  CAS  PubMed  Google Scholar 

  45. Mogenson GJ, Jones DL, Yim CY. From motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol. 1980;14:69–97. https://doi.org/10.1016/0301-0082(80)90018-0.

    Article  CAS  PubMed  Google Scholar 

  46. Rolls ET, Burton MJ, Mora F. Hypothalamic neuronal responses associated with the sight of food. Brain Res. 1976;111:53–66. https://doi.org/10.1016/0006-8993(76)91048-9.

    Article  CAS  PubMed  Google Scholar 

  47. Felder-Schmittbuhl M-P, Bailly Y, Mendoza J, Pevet P, Challet E. The cerebellum harbors a circadian oscillator involved in food anticipation. J Neurosci. 2010;30:1894–904. https://doi.org/10.1523/jneurosci.5855-09.2010.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Rothemund Y, Preuschhof C, Bohner G, Bauknecht HC, Klingebiel R, Flor H, et al. Differential activation of the dorsal striatum by high-calorie visual food stimuli in obese individuals. Neuroimage. 2007;37:410–21. https://doi.org/10.1016/j.neuroimage.2007.05.008.

    Article  PubMed  Google Scholar 

  49. Farooqi IS, O’Rahilly S, Keogh J, Bullmore E, Fletcher PC, Gillard J. Leptin regulates striatal regions and human eating behavior. Science. 2007;317:1355. https://doi.org/10.1126/science.1144599.

    Article  CAS  PubMed  Google Scholar 

  50. Tataranni PA, Gautier J-F, Chen K, Uecker A, Bandy D, Salbe AD, et al. Neuroanatomical correlates of hunger and satiation in humans using positron emission tomography. Proc Natl Acad Sci USA. 1999;96:4569–74. https://doi.org/10.1073/pnas.96.8.4569.

    Article  CAS  PubMed  Google Scholar 

  51. Killgore WD, Young AD, Femia LA, Bogorodzki P, Rogowska J, Yurgelun-Todd DA. Cortical and limbic activation during viewing of high- versus low-calorie foods. Neuroimage. 2003;19:1381–94. https://doi.org/10.1016/S1053-8119(03)00191-5.

    Article  PubMed  Google Scholar 

  52. Tuulari JJ, Karlsson HK, Hirvonen J, Salminen P, Nuutila P, Nummenmaa L. Neural circuits for cognitive appetite control in healthy and obese individuals: an fMRI study. PLoS ONE. 2015;10:1–16. https://doi.org/10.1371/journal.pone.0116640.

    Article  CAS  Google Scholar 

  53. Balodis IM, Molina ND, Kober H, Worhunsky PD, White MA, Sinha R, et al. Divergent neural substrates of inhibitory control in binge eating disorder relative to other manifestations of obesity. Obesity. 2013;21:367–77. https://doi.org/10.1002/oby.20068.

    Article  PubMed  Google Scholar 

  54. Goldman RL, Canterberry M, Borckardt JJ, Madan A, Byrne TK, George MS, et al. Executive control circuitry differentiates degree of success in weight loss following gastric-bypass surgery. Obesity. 2013;21:2189–96. https://doi.org/10.1002/oby.20575.

    Article  PubMed  Google Scholar 

  55. Kurth F, Levitt JG, Phillips OR, Luders E, Woods RP, Mazziotta JC, et al. Relationships between gray matter, body mass index, and waist circumference in healthy adults. Hum Brain Mapp. 2013;34:1737–46. https://doi.org/10.1002/hbm.22021.

    Article  PubMed  Google Scholar 

  56. Janowitz D, Terock J, Hegenscheid K, Habes M, Nauck M, Hosten N, et al. Association between waist circumference and gray matter volume in 2344 individuals from two adult community-based samples. Neuroimage. 2015;122:149–57. https://doi.org/10.1016/j.neuroimage.2015.07.086.

    Article  PubMed  Google Scholar 

  57. Hayakawa YK, Sasaki H, Takao H, Yoshikawa T, Hayashi N, Mori H, et al. The relationship of waist circumference and body mass index to grey matter volume in community dwelling adults with mild obesity. Obes Sci Pract.2018;4:97–105. https://doi.org/10.1002/osp4.145.

    Article  CAS  PubMed  Google Scholar 

  58. Mueller S, Keeser D, Samson AC, Kirsch V, Blautzik J, Grothe M, et al. Convergent findings of altered functional and structural brain connectivity in individuals with high functioning autism: a Multimodal MRI Study. PLoS ONE. 2013;8. https://doi.org/10.1371/journal.pone.0067329.

  59. Melasch J, Rullmann M, Hilbert A, Luthardt J, Becker GA, Patt M, et al. Sex differences in serotonin-hypothalamic connections underpin a diminished sense of emotional well-being with increasing body weight. Int J Obes. 2016;40:1268–77. https://doi.org/10.1038/ijo.2016.63.

    Article  CAS  Google Scholar 

  60. LaBelle DR, Cox JM, Dunn-Meynell AA, Levin BE, Flanagan-Cato LM. Genetic and dietary effects on dendrites in the rat hypothalamic ventromedial nucleus. Physiol Behav. 2009;98:511–6. https://doi.org/10.1016/j.physbeh.2009.08.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study is supported by National Institutes of Health grants DA023248, AA021449, DA045189. The NIH otherwise has no roles in study design, data collection and analysis, or the decision to publish the current results. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thang M. Le.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, T.M., Liao, DL., Ide, J. et al. The interrelationship of body mass index with gray matter volume and resting-state functional connectivity of the hypothalamus. Int J Obes 44, 1097–1107 (2020). https://doi.org/10.1038/s41366-019-0496-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-019-0496-8

This article is cited by

Search

Quick links