Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Behavior, Psychology and Sociology

Saturated fatty acid is a principal cause of anxiety-like behavior in diet-induced obese rats in relation to serum lysophosphatidyl choline level

Abstract

Background

Obesity is considered to be a risk factor for neurodegenerative- and psychiatric- diseases including Alzheimer’s disease, schizophrenia, and depression. A high-lard diet is widely used to induce obesity in model animal experiments, which also leads to anxiety-like and depression-like behaviors. However, the contribution of dietary fat source to these abnormal behaviors in obesity is largely unknown.

Methods

Sprague-Dawley rats were treated with different types of high-fat (lard and olive oil) diet with high sucrose for more than 8 weeks. Anxiety-like behavior (open-field and social interaction tests) and cognitive function (Y-maze test) after the treatment were analyzed. The expression of mRNA related to neurotransmitter and nutrient transporters in the prefrontal cortex were determined using real-time PCR. Serum lipid species were determined using liquid chromatography with tandem mass spectrometry.

Results

Both high-fat/high-sucrose diets increased body weight (BW), adipose tissue, and serum leptin level. However, the high-lard/high-sucrose (HL/HS), but not high-olive oil/HS, diet induced anxiety-like behavior in open field and social interaction tests. BW and endocrine hormones such as leptin and insulin were not correlated to anxiety-like behavior. HL/HS diet induced an increase in glutamate transporter and a decrease of glutamate receptor mRNA expressions in the prefrontal cortex. Further, serum lysophosphatidyl choline conjugated with several fatty acids was decreased by HL/HS diet. LPC conjugated with eicosapentaenoic acid (EPA) was strongly correlated with anxiety-like behavior.

Conclusions

These results suggest that lipid composition, rather than obesity per se, is a major cause of anxiety-like behavior in high-fat diet-induced obesity. Decreased levels of peripheral LPC conjugated with EPA and altered glutamate system in the prefrontal cortex might be involve in the pathophysiology of the behavioral change.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    De Pergola G, Silvestris F. Obesity as a major risk factor for cancer. J Obes. 2013;2013:291546.

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Wing RR, Lang W, Wadden TA, Safford M, Knowler WC, Bertoni AG, et al. Benefits of modest weight loss in improving cardiovascular risk factors in overweight and obese individuals with type 2 diabetes. Diabetes Care. 2011;34:1481–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Sung KC, Jeong WS, Wild SH, Byrne CD. Combined influence of insulin resistance, overweight/obesity, and fatty liver as risk factors for type 2 diabetes. Diabetes Care. 2012;35:717–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Profenno LA, Porsteinsson AP, Faraone SV. Meta-analysis of Alzheimer’s disease risk with obesity, diabetes, and related disorders. Biol Psychiatry. 2010;67:505–12.

    PubMed  Google Scholar 

  5. 5.

    Gariepy G, Nitka D, Schmitz N. The association between obesity and anxiety disorders in the population: a systematic review and meta-analysis. Int J Obes. 2010;34:407–19.

    CAS  Google Scholar 

  6. 6.

    Rouhani MH, Haghighatdoost F, Surkan PJ, Azadbakht L. Associations between dietary energy density and obesity: a systematic review and meta-analysis of observational studies. Nutrition. 2016;32:1037–47.

    PubMed  Google Scholar 

  7. 7.

    Gibson-Smith D, Bot M, Brouwer IA, Visser M, Penninx BWJH. Diet quality in persons with and without depressive and anxiety disorders. J Psychiatr Res. 2018;106:1–7.

    PubMed  Google Scholar 

  8. 8.

    Morris MC, Tangney CC. Dietary fat composition and dementia risk. Neurobiol Aging. 2014;35:S59–64.

    CAS  PubMed  Google Scholar 

  9. 9.

    Hidese S, Asano S, Saito K, Sasayama D, Kunugi H. Association of depression with body mass index classification, metabolic disease, and lifestyle: a web-based survey involving 11,876 Japanese people. J Psychiatr Res. 2018;102:23–8.

    PubMed  Google Scholar 

  10. 10.

    Kanoski SE, Meisel RL, Mullins AJ, Davidson TL. The effects of energy-rich diets on discrimination reversal learning and on BDNF in the hippocampus and prefrontal cortex of the rat. Behav Brain Res. 2007;182:57–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Ishimoto T, Lanaspa MA, Rivard CJ, Roncal-Jimenez CA, Orlicky DJ, Cicerchi C, et al. High-fat and high-sucrose (western) diet induces steatohepatitis that is dependent on fructokinase. Hepatology. 2013;58:1632–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Catta-Preta M, Martins MA, Cunha Brunini TM, Mendes-Ribeiro AC, Mandarim-de-Lacerda CA, Aguila MB. Modulation of cytokines, resistin, and distribution of adipose tissue in C57BL/6 mice by different high-fat diets. Nutrition. 2012;28:212–9.

    CAS  PubMed  Google Scholar 

  13. 13.

    Décarie-Spain L, Sharma S, Hryhorczuk C, Issa-Garcia V, Barker PA, Arbour N, et al. Nucleus accumbens inflammation mediates anxiodepressive behavior and compulsive sucrose seeking elicited by saturated dietary fat. Mol Metab. 2018;10:1–13.

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Dutheil S, Ota KT, Wohleb ES, Rasmussen K, Duman RS. High-fat diet induced anxiety and anhedonia: impact on brain homeostasis and inflammation. Neuropsychopharmacology. 2016;41:1874–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Aslani S, Vieira N, Marques F, Costa PS, Sousa N, Palha JA. The effect of high-fat diet on rat’s mood, feeding behavior and response to stress. Transl Psychiatry. 2015;5:e684.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Gainey SJ, Kwakwa KA, Bray JK, Pillote MM, Tir VL, Towers AE, et al. Short-term high-fat diet (HFD) induced anxiety-like behaviors and cognitive impairment are improved with treatment by glyburide. Front Behav Neurosci. 2016;10:156.

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Valladolid-Acebes I, Merino B, Principato A, Fole A, Barbas C, Lorenzo MP, et al. High-fat diets induce changes in hippocampal glutamate metabolism and neurotransmission. Am J Physiol Endocrinol Metab. 2012;302:E396–402.

    CAS  PubMed  Google Scholar 

  18. 18.

    Naneix F, Tantot F, Glangetas C, Kaufling J, Janthakhin Y, Boitard C, et al. Impact of early consumption of high-fat diet on the mesolimbic dopaminergic system. eNeuro. 2017;4:ENEURO.0120–17.2017.

    Google Scholar 

  19. 19.

    Zemdegs J, Quesseveur G, Jarriault D, Pénicaud L, Fioramonti X, Guiard BP. High-fat diet-induced metabolic disorders impairs 5-HT function and anxiety-like behavior in mice. Br J Pharmacol. 2016;173:2095–110.

    CAS  PubMed  Google Scholar 

  20. 20.

    de Noronha SR, Campos GV, Abreu AR, de Souza AA, Chianca DA Jr, de Menezes RC. High fat diet induced-obesity facilitates anxiety-like behaviors due to GABAergic impairment within the dorsomedial hypothalamus in rats. Behav Brain Res. 2017;316:38–46.

    PubMed  Google Scholar 

  21. 21.

    Bozzatello P, Brignolo E, De Grandi E, Bellino S. Supplementation with omega-3 fatty acids in psychiatric disorders: a review of literature data. J Clin Med. 2016;5:E67.

    PubMed  Google Scholar 

  22. 22.

    Hsu MC, Tung CY, Chen HE. Omega-3 polyunsaturated fatty acid supplementation in prevention and treatment of maternal depression: putative mechanism and recommendation. J Affect Disord. 2018;238:47–61.

    CAS  PubMed  Google Scholar 

  23. 23.

    Lonergan PE, Martin DS, Horrobin DF, Lynch MA. Neuroprotective actions of eicosapentaenoic acid on lipopolysaccharide-induced dysfunction in rat hippocampus. J Neurochem. 2004;91:20–9.

    CAS  PubMed  Google Scholar 

  24. 24.

    Kawashima A, Harada T, Kami H, Yano T, Imada K, Mizuguchi K. Effects of eicosapentaenoic acid on synaptic plasticity, fatty acid profile and phosphoinositide 3-kinase signaling in rat hippocampus and differentiated PC12 cells. J Nutr Biochem. 2010;21:268–77.

    CAS  PubMed  Google Scholar 

  25. 25.

    Jin Y, Park Y. N-3 polyunsaturated fatty acids and 17β-estradiol injection induce antidepressant-like effects through regulation of serotonergic neurotransmission in ovariectomized rats. J Nutr Biochem. 2015;26:970–7.

    CAS  PubMed  Google Scholar 

  26. 26.

    Qosa H, Mohamed LA, Batarseh YS, Alqahtani S, Ibrahim B, LeVine H, et al. Extra-virgin olive oil attenuates amyloid-β and tau pathologies in the brains of TgSwDI mice. J Nutr Biochem. 2015;26:1479–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Moon ML, Joesting JJ, Lawson MA, Chiu GS, Blevins NA, Kwakwa KA, et al. The saturated fatty acid, palmitic acid, induces anxiety-like behavior in mice. Metabolism. 2014;63:1131–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Bazinet RP, Layé S. Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat Rev Neurosci. 2014;15:771–85.

    CAS  PubMed  Google Scholar 

  29. 29.

    Nakajima S, Hira T, Hara H. Postprandial glucagon-like peptide-1 secretion is increased during the progression of glucose intolerance and obesity in high-fat/high-sucrose diet-fed rats. Br J Nutr. 2015;113:1477–88.

    CAS  PubMed  Google Scholar 

  30. 30.

    Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37:911–7.

    CAS  PubMed  Google Scholar 

  31. 31.

    Fukasawa K, Nakajima S, Gotoh M, Tanaka S, Murofushi H, Murakami-Murofushi K. Qualitative and quantitative comparison of cyclic phosphatidic acid and its related lipid species in rat serum using hydrophilic interaction liquid chromatography with tandem-mass spectrometry. J Chromatogr A. 2018;1567:177–84.

    CAS  PubMed  Google Scholar 

  32. 32.

    Davidson RJ. Anxiety and affective style: role of prefrontal cortex and amygdala. Biol Psychiatry. 2002;51:68–80.

    PubMed  Google Scholar 

  33. 33.

    Welte MA. Expanding roles for lipid droplets. Curr Biol. 2015;25:R470–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Nguyen LN, Ma D, Shui G, Wong P, Cazenave-Gassiot A, Zhang X, et al. Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid. Nature. 2014;509:503–6.

    CAS  PubMed  Google Scholar 

  35. 35.

    Sugasini D, Thomas R, Yalagala PCR, Tai LM, Subbaiah PV. Dietary docosahexaenoic acid (DHA) as lysophosphatidylcholine, but not as free acid, enriches brain DHA and improves memory in adult mice. Sci Rep. 2017;7:11263.

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Yung YC, Stoddard NC, Mirendil H, Chun J. Lysophosphatidic acid signaling in the nervous system. Neuron. 2015;85:669–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Posse de Chaves E, Sipione S. Sphingolipids and gangliosides of the nervous system in membrane function and dysfunction. FEBS Lett. 2010;584:1748–59.

    CAS  PubMed  Google Scholar 

  38. 38.

    Sharma S, Fulton S. Diet-induced obesity promotes depressive-like behaviour that is associated with neural adaptations in brain reward circuitry. Int J Obes. 2013;37:382–9.

    CAS  Google Scholar 

  39. 39.

    Xu TJ, Reichelt AC. Sucrose or sucrose and caffeine differentially impact memory and anxiety-like behaviours, and alter hippocampal parvalbumin and doublecortin. Neuropharmacology. 2018;137:24–32.

    CAS  PubMed  Google Scholar 

  40. 40.

    Ogrodnik M, Zhu Y, Langhi LGP, Tchkonia T, Krüger P, Fielder E, et al. Obesity-induced cellular senescence drives anxiety and impairs neurogenesis. Cell Metab. 2018;S1550-4131:30745–9.

    Google Scholar 

  41. 41.

    Liu J, Garza JC, Bronner J, Kim CS, Zhang W, Lu XY. Acute administration of leptin produces anxiolytic-like effects: a comparison with fluoxetine. Psychopharmacology. 2010;207:535–45.

    CAS  PubMed  Google Scholar 

  42. 42.

    Van Doorn C, Macht VA, Grillo CA, Reagan LP. Leptin resistance and hippocampal behavioral deficits. Physiol Behav. 2017;176:207–13.

    PubMed  Google Scholar 

  43. 43.

    Gancheva S, Galunska B, Zhelyazkova-Savova M. Diets rich in saturated fat and fructose induce anxiety and depression-like behaviours in the rat: is there a role for lipid peroxidation? Int J Exp Pathol. 2017;98:296–306.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Fu Z, Wu J, Nesil T, Li MD, Aylor KW, Liu Z. Long-term high-fat diet induces hippocampal microvascular insulin resistance and cognitive dysfunction. Am J Physiol Endocrinol Metab. 2017;312:E89–97.

    PubMed  Google Scholar 

  45. 45.

    Barber MN, Risis S, Yang C, Meikle PJ, Staples M, Febbraio MA, et al. Plasma lysophosphatidylcholine levels are reduced in obesity and type 2 diabetes. PLoS ONE. 2012;7:e41456.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Heimerl S, Fischer M, Baessler A, Liebisch G, Sigruener A, Wallner S, et al. Alterations of plasma lysophosphatidylcholine species in obesity and weight loss. PLoS ONE. 2014;9:e111348.

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Rauschert S, Uhl O, Koletzko B, Kirchberg F, Mori TA, Huang RC, et al. Lipidomics reveals associations of phospholipids with obesity and insulin resistance in young adults. J Clin Endocrinol Metab. 2016;101:871–9.

    CAS  PubMed  Google Scholar 

  48. 48.

    Lin PY, Huang SY, Su KP. A meta-analytic review of polyunsaturated fatty acid compositions in patients with depression. Biol Psychiatry. 2010;68:140–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Pusceddu MM, Kelly P, Ariffin N, Cryan JF, Clarke G, Dinan TG. n-3 PUFAs have beneficial effects on anxiety and cognition in female rats: Effects of early life stress. Psychoneuroendocrinology. 2015;58:79–90.

    CAS  PubMed  Google Scholar 

  50. 50.

    Vines A, Delattre AM, Lima MM, Rodrigues LS, Suchecki D, Machado RB, et al. The role of 5-HT A receptors in fish oil-mediated increased BDNF expression in the rat hippocampus and cortex: a possible antidepressant mechanism. Neuropharmacology. 2012;62:184–91.

    CAS  PubMed  Google Scholar 

  51. 51.

    Berry SE. Triacylglycerol structure and interesterification of palmitic and stearic acid-rich fats: an overview and implications for cardiovascular disease. Nutr Res Rev. 2009;22:3–17.

    CAS  PubMed  Google Scholar 

  52. 52.

    Weng J, Jiang S, Ding L, Xu Y, Zhu X, Jin P. Autotaxin/lysophosphatidic acid signaling mediates obesity-related cardiomyopathy in mice and human subjects. J Cell Mol Med. 2019;23:1050–8.

    CAS  PubMed  Google Scholar 

  53. 53.

    Nagle CA, An J, Shiota M, Torres TP, Cline GW, Liu ZX, et al. Hepatic overexpression of glycerol-sn-3-phosphate acyltransferase 1 in rats causes insulin resistance. J Biol Chem. 2007;282:14807–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Gupta S, Knight AG, Gupta S, Keller JN, Bruce-Keller AJ. Saturated long-chain fatty acids activate inflammatory signaling in astrocytes. J Neurochem. 2012;120:1060–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Refojo D, Schweizer M, Kuehne C, Ehrenberg S, Thoeringer C, Vogl AM, et al. Glutamatergic and dopaminergic neurons mediate anxiogenic and anxiolytic effects of CRHR1. Science. 2011;333:1903–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Chiba S, Numakawa T, Ninomiya M, Richards MC, Wakabayashi C, Kunugi H. Chronic restraint stress causes anxiety- and depression-like behaviors, downregulates glucocorticoid receptor expression, and attenuates glutamate release induced by brain-derived neurotrophic factor in the prefrontal cortex. Prog Neuropsychopharmacol Biol Psychiatry. 2012;39:112–9.

    CAS  PubMed  Google Scholar 

  57. 57.

    Lombardi G, Leonardi P, Moroni F. Metabotropic glutamate receptors, transmitter output and fatty acids: studies in rat brain slices. Br J Pharmacol. 1996;117:189–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Grintal B, Champeil-Potokar G, Lavialle M, Vancassel S, Breton S, Denis I. Inhibition of astroglial glutamate transport by polyunsaturated fatty acids: evidence for a signalling role of docosahexaenoic acid. Neurochem Int. 2009;54:535–43.

    CAS  PubMed  Google Scholar 

  59. 59.

    Xiao Y, Li X. Polyunsaturated fatty acids modify mouse hippocampal neuronal excitability during excitotoxic or convulsant stimulation. Brain Res. 1999;846:112–21.

    CAS  PubMed  Google Scholar 

  60. 60.

    Müller CP, Reichel M, Mühle C, Rhein C, Gulbins E, Kornhuber J. Brain membrane lipids in major depression and anxiety disorders. Biochim Biophys Acta. 2015;1851:1052–65.

    PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by JSPS KAKENHI Grant numbers 16K16589 (SN), 26860144 (MG), and the Strategic Research Program for Brain Sciences from Japan Agency for Medical Research and development, AMED Grant number 17dm0107100h0002 (HK).

Author contributions

SN designed research; SN, and KF, conducted research and analyzed data; SN wrote the paper; MG, KM-M, and HK reviewed and edited the paper. SN had primary responsibility for final content. All authors read and approved the final paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shingo Nakajima.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nakajima, S., Fukasawa, K., Gotoh, M. et al. Saturated fatty acid is a principal cause of anxiety-like behavior in diet-induced obese rats in relation to serum lysophosphatidyl choline level. Int J Obes 44, 727–738 (2020). https://doi.org/10.1038/s41366-019-0468-z

Download citation

Search

Quick links