Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Epidemiology and Population Health

Association between Transcription Factor AP-2B genotype, obesity, insulin resistance and dietary intake in a longitudinal birth cohort study



The development of obesity has a large genetic component, and the gene encoding the transcription factor 2 beta (TFAP2B) has been identified as one of the responsible factors. We investigated the effect of TFAP2B intron 2 variable number tandem repeat (VNTR) genotype on obesity, insulin resistance and dietary intake from 15 to 33 years of age.


The sample included both birth cohorts (originally n = 1176) of the longitudinal Estonian Children Personality Behaviour and Health Study. The association between TFAP2B genotype, and anthropometric measurements, glucose metabolism and dietary intake at ages 15, 18 and 25 years was assessed using the linear mixed-effects regression models. Differences in anthropometric measurements, biochemical measures, blood pressure and dietary intake between TFAP2B genotypes at different age, including data of the older cohort at age 33, were assessed by one-way ANOVA.


Male homozygotes for the TFAP2B 5-repeat allele had significantly higher body weight, body mass index, sum of 5 skinfolds, proportion of body fat, waist circumference, hip circumference, waist-to-hip ratio, waist-to-height ratio, fasting insulin and HOMA index. In female subjects, homozygotes for the TFAP2B 5-repeat allele had significantly larger increase in the rate of change per year in body weight, body mass index and hip circumference between years 15 and 25. By age 33, the findings were similar. A decrease in daily energy intake from adolescence to young adulthood was observed. In males, heterozygotes had significantly smaller decrease in the rate of change per year in daily energy intake.


The association of TFAP2B with the development of obesity and insulin resistance is present throughout adolescence to young adulthood in males. In females the effect of TFAP2B on obesity appears later, in young adulthood. The TFAP2B effect is rather related to differences in metabolism than energy intake.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Midthjell K, Lee CMY, Langhammer A, Krokstad S, Holmen TL, Hveem K, et al. Trends in overweight and obesity over 22 years in a large adult population: the HUNT Study, Norway. Clin Obes. 2013;3:12–20.

    CAS  Article  Google Scholar 

  2. 2.

    GBD 2015 Obesity Collaborators, Afshin A, Forouzanfar MH, Reitsma MB, Sur P, Estep K, et al. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017;377:13–27.

    Article  Google Scholar 

  3. 3.

    Freedman DS, Ford ES. Are the recent secular increases in the waist circumference of adults independent of changes in BMI? Am J Clin Nutr. 2015;101:425–31.

    CAS  Article  Google Scholar 

  4. 4.

    Bhupathiraju SN, Hu FB. Epidemiology of obesity and diabetes and their cardiovascular complications. Circ Res. 2016;118:1723–35.

    CAS  Article  Google Scholar 

  5. 5.

    Bell CG, Walley AJ, Froguel P. The genetics of human obesity. Nat Rev Genet. 2005;6:221–34.

    CAS  Article  Google Scholar 

  6. 6.

    Rokholm B, Silventoinen K, Tynelius P, Gamborg M, Sørensen TIA, Rasmussen F. Increasing genetic variance of body mass index during the Swedish obesity epidemic. PLoS ONE. 2011;6:e27135.

    CAS  Article  Google Scholar 

  7. 7.

    Silventoinen K, Rokholm B, Kaprio J, Sørensen TIA. The genetic and environmental influences on childhood obesity: a systematic review of twin and adoption studies. Int J Obes. 2010;34:29–40.

    CAS  Article  Google Scholar 

  8. 8.

    Nordquist N, Göktürk C, Comasco E, Eensoo D, Merenäkk L, Veidebaum T, et al. The transcription factor TFAP2B is associated with insulin resistance and adiposity in healthy adolescents. Obesity. 2009;17:1762–7.

    CAS  Article  Google Scholar 

  9. 9.

    Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518:197–206.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Felix JF, Bradfield JP, Monnereau C, van der Valk RJP, Stergiakouli E, Chesi A, et al. Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index. Hum Mol Genet. 2016;25:389–403.

    CAS  Article  Google Scholar 

  11. 11.

    Tsukada S, Tanaka Y, Maegawa H, Kashiwagi A, Kawamori R, Maeda S. Intronic polymorphisms within TFAP2B regulate transcriptional activity and affect adipocytokine gene expression in differentiated adipocytes. Mol Endocrinol. 2006;20:1104–11.

    CAS  Article  Google Scholar 

  12. 12.

    Ikeda K, Maegawa H, Ugi S, Tao Y, Nishio Y, Tsukada S, et al. Transcription factor activating enhancer-binding protein-2beta. A negative regulator of adiponectin gene expression. J Biol Chem. 2006;281:31245–53.

    CAS  Article  Google Scholar 

  13. 13.

    Tao Y, Maegawa H, Ugi S, Ikeda K, Nagai Y, Egawa K, et al. The transcription factor AP-2beta causes cell enlargement and insulin resistance in 3T3-L1 adipocytes. Endocrinology. 2006;147:1685–96.

    CAS  Article  Google Scholar 

  14. 14.

    Harro M, Eensoo D, Kiive E, Merenäkk L, Alep J, Oreland L, et al. Platelet monoamine oxidase in healthy 9- and 15-years old children: the effect of gender, smoking and puberty. Prog Neuropsychopharmacol Biol Psychiatry. 2001;25:1497–511.

    CAS  Article  Google Scholar 

  15. 15.

    Kiive E, Laas K, Vaht M, Veidebaum T, Harro J. Stressful life events increase aggression and alcohol use in young carriers of the GABRA2 rs279826/rs279858 A-allele. Eur Neuropsychopharmacol. 2017;27:816–27.

    CAS  Article  Google Scholar 

  16. 16.

    Durnin JV, Womersley J. Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. Br J Nutr. 1974;32:77–97.

    CAS  Article  Google Scholar 

  17. 17.

    Durnin JVGA, Rahaman MM. The assessment of the amount of fat in the human body from measurements of skinfold thickness. Br J Nutr. 1967;21:681–9.

    CAS  Article  Google Scholar 

  18. 18.

    Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–9.

    CAS  Article  Google Scholar 

  19. 19.

    Haapa E, Toponen T, Pietinen P, Räsänen L Annoskuvakirja. Helsingi: Kansanterveyslaitas; 1985.

  20. 20.

    Detry MA, Ma Y. Analyzing repeated measurements using mixed models. JAMA. 2016;315:407–8.

    CAS  Article  Google Scholar 

  21. 21.

    Lindgren CM, Heid IM, Randall JC, Lamina C, Steinthorsdottir V, Qi L, et al. Genome-wide association scan meta-analysis identifies three Loci influencing adiposity and fat distribution. PLoS Genet. 2009;5:e1000508.

    Article  Google Scholar 

  22. 22.

    Speliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G, Jackson AU, et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet. 2010;42:937–48.

    CAS  Article  Google Scholar 

  23. 23.

    Guo Y, Lanktree MB, Taylor KC, Hakonarson H, Lange LA, Keating BJ, et al. Gene-centric meta-analyses of 108 912 individuals confirm known body mass index loci and reveal three novel signals. Hum Mol Genet. 2013;22:184–201.

    CAS  Article  Google Scholar 

  24. 24.

    Berndt SI, Gustafsson S, Mägi R, Ganna A, Wheeler E, Feitosa MF, et al. Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture. Nat Genet. 2013;45:501–12.

    CAS  Article  Google Scholar 

  25. 25.

    Seyednasrollah F, Mäkelä J, Pitkänen N, Juonala M, Hutri-Kähönen N, Lehtimäki T, et al. Prediction of adulthood obesity using genetic and childhood clinical risk factors in the cardiovascular risk in young finns study. Circ Cardiovasc Genet. 2017;10:e001554.

    Article  Google Scholar 

  26. 26.

    Nelson MC, Gordon-Larsen P, North KE, Adair LS. Body mass index gain, fast food, and physical activity: effects of shared environments over time. Obesity. 2006;14:701–9.

    Article  Google Scholar 

  27. 27.

    Lajunen H-R, Kaprio J, Keski-Rahkonen A, Rose RJ, Pulkkinen L, Rissanen A, et al. Genetic and environmental effects on body mass index during adolescence: a prospective study among Finnish twins. Int J Obes. 2009;33:559–67.

    Article  Google Scholar 

  28. 28.

    Graff M, North KE, Richardson AS, Young KL, Mazul AL, Highland HM, et al. BMI loci and longitudinal BMI from adolescence to young adulthood in an ethnically diverse cohort. Int J Obes. 2017;41:759–68.

    CAS  Article  Google Scholar 

  29. 29.

    Graff M, Ngwa JS, Workalemahu T, Homuth G, Schipf S, Teumer A, et al. Genome-wide analysis of BMI in adolescents and young adults reveals additional insight into the effects of genetic loci over the life course. Hum Mol Genet. 2013;22:3597–607.

    CAS  Article  Google Scholar 

  30. 30.

    Eckert D, Buhl S, Weber S, Jäger R, Schorle H. The AP-2 family of transcription factors. Genome Biol. 2005;6:246.1–8.

    Article  Google Scholar 

  31. 31.

    Damberg M, Garpenstrand H, Alfredsson J, Ekblom J, Forslund K, Rylander G, et al. A polymorphic region in the human transcription factor AP-2beta gene is associated with specific personality traits. Mol Psychiatry. 2000;5:220–4.

    CAS  Article  Google Scholar 

  32. 32.

    Damberg M, Eller M, Tõnissaar M, Oreland L, Harro J. Levels of transcription factors AP-2alpha and AP-2beta in the brainstem are correlated to monoamine turnover in the rat forebrain. Neurosci Lett. 2001;313:102–4.

    CAS  Article  Google Scholar 

  33. 33.

    Comasco E, Iliadis SI, Larsson A, Olovsson M, Oreland L, Sundström-Poromaa I, et al. Adipocytokines levels at delivery, functional variation of TFAP2β, and maternal and neonatal anthropometric parameters. Obesity. 2013;21:2130–7.

    CAS  Article  Google Scholar 

  34. 34.

    Maeda S, Tsukada S, Kanazawa A, Sekine A, Tsunoda T, Koya D, et al. Genetic variations in the gene encoding TFAP2B are associated with type 2 diabetes mellitus. J Hum Genet. 2005;50:283–92.

    CAS  Article  Google Scholar 

  35. 35.

    Maeda S, Osawa N, Hayashi T, Tsukada S, Kobayashi M, Kikkawa R. Genetic variations associated with diabetic nephropathy and type II diabetes in a Japanese population. Kidney Int Suppl. 2007;72:S43–8.

    Article  Google Scholar 

  36. 36.

    Remy E, Issanchou S, Chabanet C, Boggio V, Nicklaus S. Impact of adiposity, age, sex and maternal feeding practices on eating in the absence of hunger and caloric compensation in preschool children. Int J Obes. 2015;39:925–30.

    CAS  Article  Google Scholar 

  37. 37.

    Wardle J, Haase AM, Steptoe A, Nillapun M, Jonwutiwes K, Bellisle F. Gender differences in food choice: the contribution of health beliefs and dieting. Ann Behav Med. 2004;27:107–16.

    Article  Google Scholar 

  38. 38.

    Chowen JA, Freire-Regatillo A, Argente J. Neurobiological characteristics underlying metabolic differences between males and females. Prog Neurobiol. 2019;176:18–32.

    CAS  Article  Google Scholar 

  39. 39.

    Asarian L, Geary N. Sex differences in the physiology of eating. Am J Physiol Regul Integr Comp Physiol. 2013;305:1215–67.

    Article  Google Scholar 

Download references


This study was supported by the Estonian Ministry of Education and Research (IUT20-40) and the European Commission Horizon 2020 Programme Projects CoCA (no 667302) and Eat2beNICE (no 728018). We are grateful to the participants of the ECPBHS and to the whole ECPBHS Study Team. Erika Comasco is a Marie Skłodowska Curie fellow and received funds from the Swedish Research Council (VR: 2015-00495), EU FP7-People-Cofund (INCA 600398) and SciLifeLab.

Author information



Corresponding author

Correspondence to Jaanus Harro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Joost, U., Villa, I., Comasco, E. et al. Association between Transcription Factor AP-2B genotype, obesity, insulin resistance and dietary intake in a longitudinal birth cohort study. Int J Obes 43, 2095–2106 (2019).

Download citation

Further reading


Quick links