Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Epidemiology and population health

Childhood growth patterns and cardiovascular autonomic modulation in midlife: Northern Finland 1966 Birth Cohort Study

Abstract

Objectives

To test the hypothesis that age and body mass index (BMI) at BMI peak during infancy and at BMI rebound in childhood are related to cardiovascular autonomic modulation in adulthood.

Methods

At the age of 46 years, a sample (n = 5861) of the participants of the Northern Finland Birth Cohort 1966 took part in follow-up examinations. Heart rate variability (HRV), baroreflex sensitivity (BRS) and low-frequency oscillations of systolic blood pressure (LFSBP) were measured during sympathetic stimulus by standing. BMI at various ages was calculated from frequent anthropometric measurements collected from child welfare clinical records. BRS and LFSBP were available for 1243 participants with BMI peak data and 1524 participants with BMI rebound data, and HRV for 2137 participants with BMI peak data and 2688 participants with BMI rebound data.

Results

Age at BMI rebound had a significant inverse association with LFSBP (beta = −0.071, p = 0.006) after all adjustments (p < 0.001) and was also directly associated with BRS (beta = 0.082, p = 0.001) independently of birth and maternal factors (p = 0.023). BMI at BMI peak and at BMI rebound was inversely associated with high-frequency component of HRV (HF) (beta = −0.045, p = 0.036 for BMI at peak; beta = −0.043, p = 0.024 for BMI at rebound) and directly associated with the ratio of low- and high-frequency components of HRV (LF/HF ratio) (beta = 0.084, p = < 0.001 for BMI at peak; beta = 0.069, p < 0.001 for BMI at rebound). These associations remained significant after all adjustments (p < 0.05 for all).

Conclusions

This novel study shows that younger age at BMI rebound and higher BMI at BMI peak and at BMI rebound are associated with higher levels in markers suggestive of augmented sympathetic and reduced vagal cardiovascular modulation in midlife.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Taşçılar ME, Yokuşoğlu M, Boyraz M, Baysan O, Köz C, Dündaröz R. Cardiac autonomic functions in obese children. J Clin Res Pediatr Endocrinol. 2011;3:60–64.

    PubMed  PubMed Central  Google Scholar 

  2. Kaufman CL, Kaiser DR, Steinberger J, Dengel DR. Relationships between heart rate variability, vascular function, and adiposity in children. Clin Auton Res. 2007;17:165–71.

    Article  PubMed  Google Scholar 

  3. Birch SL, Duncan MJ, Franklin C. Overweight and reduced heart rate variability in British children: an exploratory study. Prev Med. 2012;55:430–32.

    Article  PubMed  Google Scholar 

  4. Zhou Y, Xie G, Wang J, Yang S. Cardiovascular risk factors significantly correlate with autonomic nervous system activity in children. Can J Cardiol. 2012;28:477–82.

    Article  PubMed  Google Scholar 

  5. Rodríguez-Colón SM, Bixler EO, Li X, Vgontzas AN, Liao D. Obesity is associated with impaired cardiac autonomic modulation in children. Int J Pediatr Obes. 2011;6:128–34.

    Article  PubMed  Google Scholar 

  6. Dangardt F, Volkmann R, Chen Y, Osika W, Marild S, Friberg P. Reduced cardiac vagal activity in obese children and adolescents. Clin Physiol Funct Imaging. 2011;31:108–13.

    PubMed  Google Scholar 

  7. Vanderlei LC, Pastre CM, Freitas IF Jr, Godoy MF. Analysis of cardiac autonomic modulation in obese and eutrophic children. Clinics. 2010;65:789–92.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Nagai N, Matsumoto T, Kita H, Moritani T. Autonomic nervous system activity and the state and development of obesity in Japanese school children. Obes Res. 2003;11:25–32.

    Article  PubMed  Google Scholar 

  9. Dekker JM, Crow RS, Folsom AR, Hannan PJ, Liao D, Swenne CA, et al. Low heart rate variability in a 2-minute rhythm strip predicts risk of coronary heart disease and mortality from several causes: the ARIC Study. Atherosclerosis Risk In Communities. Circulation. 2000;102:1239–44.

    Article  CAS  PubMed  Google Scholar 

  10. Liao D, Cai J, Brancati FL, Folsom A, Barnes RW, Tyroler HA, et al. Association of vagal tone with serum insulin, glucose, and diabetes mellitus--The ARIC Study. Diabetes Res Clin Pract. 1995;30:211–21.

    Article  CAS  PubMed  Google Scholar 

  11. Tsuji H, Larson MG, Venditti FJ, Manders ES, Evans JC, Feldman CL, et al. Impact of reduced heart rate variability on risk for cardiac events. The Framingham Heart Study. Circulation. 1996;94:2850–55.

    Article  CAS  PubMed  Google Scholar 

  12. Kiviniemi AM, Tulppo MP, Hautala AJ, Perkiomaki JS, Ylitalo A, Kesaniemi YA, et al. Prognostic significance of impaired baroreflex sensitivity assessed from phase IV of the valsalva maneuver in a population-based sample of middle-aged subjects. Am J Cardiol. 2014;114:571–76.

    Article  PubMed  Google Scholar 

  13. Rolland-Cachera MF, Deheeger M, Bellisle F, Sempé M, Guilloud-Bataille M, Patois E. Adiposity rebound in children: a simple indicator for predicting obesity. Am J Clin Nutr. 1984;39:129–35.

    Article  CAS  PubMed  Google Scholar 

  14. Hughes AR, Sherriff A, Ness AR, Reilly JJ. Timing of adiposity rebound and adiposity in adolescence. Pediatrics. 2014;134:e1354–61.

    Article  PubMed  Google Scholar 

  15. Mo-Suwan L, McNeil E, Sangsupawanich P, Chittchang U, Choprapawon C. Adiposity rebound from three to six years of age was associated with a higher insulin resistance risk at eight-and-a-half years in a birth cohort study. Acta Paediatr. 2017;106:128–34.

    Article  CAS  PubMed  Google Scholar 

  16. Peneau S, Gonzalez-Carrascosa R, Gusto G, Goxe D, Lantieri O, Fezeu L, et al. Age at adiposity rebound: Determinants and association with nutritional status and the metabolic syndrome at adulthood. Int J Obes. 2016;40:1150–56.

    Article  CAS  Google Scholar 

  17. Taylor RW, Grant AM, Goulding A, Williams SM. Early adiposity rebound: Review of papers linking this to subsequent obesity in children and adults. Curr Opin Clin Nutr Metab Care. 2005;8:607–12.

    Article  PubMed  Google Scholar 

  18. Sovio U, Kaakinen M, Tzoulaki I, Das S, Ruokonen A, Pouta A, et al. How do changes in body mass index in infancy and childhood associate with cardiometabolic profile in adulthood? Findings from the Northern Finland Birth Cohort 1966 Study. Int J Obes. 2014;38:53–59.

    Article  CAS  Google Scholar 

  19. Cole TJ. Children grow and horses race: Is the adiposity rebound a critical period for later obesity? BMC Pediatr. 2004;4:6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lloyd LJ, Langley-Evans SC, McMullen S. Childhood obesity and risk of the adult metabolic syndrome: a systematic review. Int J Obes. 2012;36:1–11.

    Article  CAS  Google Scholar 

  21. Lloyd LJ, Langley-Evans SC, McMullen S. Childhood obesity and adult cardiovascular disease risk: a systematic review. Int J Obes. 2010;34:18–28.

    Article  CAS  Google Scholar 

  22. Rolland-Cachera MF, Deheeger M, Maillot M, Bellisle F. Early adiposity rebound: causes and consequences for obesity in children and adults. Int J Obes. 2006;30:11–17.

    Article  Google Scholar 

  23. Silverwood RJ, De Stavola BL, Cole TJ, Leon DA. BMI peak in infancy as a predictor for later BMI in the Uppsala Family Study. Int J Obes. 2009;33:929–37.

    Article  CAS  Google Scholar 

  24. Wen X, Kleinman K, Gillman MW, Rifas-Shiman SL, Taveras EM. Childhood body mass index trajectories: modeling, characterizing, pairwise correlations and socio-demographic predictors of trajectory characteristics. BMC Med Res Methodol. 2012;12:38.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Järvelin MR, Sovio U, King V, Lauren L, Xu B, McCarthy MI. et al. Early life factors and blood pressure at age 31 years in the 1966 Northern Finland birth cohort. Hypertension. 2004;44:838–46.

    Article  CAS  PubMed  Google Scholar 

  26. Soldatos CR, Dikeos DG, Paparrigopoulos TJ. The diagnostic validity of the Athens insomnia scale. J Psychosom Res. 2003;55:263–67.

    Article  PubMed  Google Scholar 

  27. Perkiomaki N, Auvinen J, Tulppo MP, Hautala AJ, Perkiomaki J, Karhunen V, et al. Association between birth characteristics and cardiovascular autonomic function at mid-life. PLoS ONE. 2016;11:e0161604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Eur Heart J. 1996;17:354–81.

  29. Kiviniemi AM, Hautala AJ, Karjalainen JJ, Piira OP, Lepojarvi S, Tiinanen S, et al. Impact of type 2 diabetes on cardiac autonomic responses to sympathetic stimuli in patients with coronary artery disease. Auton Neurosci. 2013;179:142–47.

    Article  PubMed  Google Scholar 

  30. Kiviniemi AM, Hintsala H, Hautala AJ, Ikaheimo TM, Jaakkola JJ, Tiinanen S, et al. Impact and management of physiological calibration in spectral analysis of blood pressure variability. Front Physiol. 2014;5:473.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Furlan R, Porta A, Costa F, Tank J, Baker L, Schiavi R, et al. Oscillatory patterns in sympathetic neural discharge and cardiovascular variables during orthostatic stimulus. Circulation. 2000;101:886–92.

    Article  CAS  PubMed  Google Scholar 

  32. Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med. 1998;15:539–53.

    Article  CAS  Google Scholar 

  33. Taylor RW, Goulding A, Lewis-Barned NJ, Williams SM. Rate of fat gain is faster in girls undergoing early adiposity rebound. Obes Res. 2004;12:1228–30.

    Article  PubMed  Google Scholar 

  34. Williams SM. Weight and height growth rate and the timing of adiposity rebound. Obes Res. 2005;13:1123–30.

    Article  PubMed  Google Scholar 

  35. Landgraf K, Rockstroh D, Wagner IV, Weise S, Tauscher R, Schwartze JT, et al. Evidence of early alterations in adipose tissue biology and function and its association with obesity-related inflammation and insulin resistance in children. Diabetes. 2015;64:1249–61.

    Article  CAS  PubMed  Google Scholar 

  36. Freemark M. Predictors of childhood obesity and pathogenesis of comorbidities. Pediatr Ann. 2014;43:357–60.

    Article  PubMed  Google Scholar 

  37. Freedman DS, Patel DA, Srinivasan SR, Chen W, Tang R, Bond MG, et al. The contribution of childhood obesity to adult carotid intima-media thickness: the Bogalusa Heart Study. Int J Obes. 2008;32:749–56.

    Article  CAS  Google Scholar 

  38. Berenson GS, Srinivasan SR, Bao W, Newman WP, Tracy RE, Wattigney WA. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The Bogalusa Heart Study. N Engl J Med. 1998;338:1650–6.

    Article  CAS  PubMed  Google Scholar 

  39. Geserick M, Vogel M, Gausche R, Lipek T, Spielau U, Keller E, et al. Acceleration of BMI in early childhood and risk of sustained obesity. N Engl J Med. 2018;379:1303–12.

    Article  PubMed  Google Scholar 

  40. Malliani A, Pagani M, Lombardi F, Cerutti S. Cardiovascular neural regulation explored in the frequency domain. Circulation. 1991;84:482–92.

    Article  CAS  PubMed  Google Scholar 

  41. Liao D, Rodríguez-Colón SM, He F, Bixler EO. Childhood obesity and autonomic dysfunction: risk for cardiac morbidity and mortality. Curr Treat Options Cardiovasc Med. 2014;16:342.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ip EH, Marshall SA, Saldana S, Skelton JA, Suerken CK, Arcury TA, et al. Determinants of adiposity rebound timing in children. J Pediatr. 2017;184:151–6.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Linares J, Corvalán C, Galleguillos B, Kain J, González L, Uauy R, et al. The effects of pre-pregnancy BMI and maternal factors on the timing of adiposity rebound in offspring. Obes (Silver Spring). 2016;24:1313–9.

    Article  Google Scholar 

  44. Kardos A, Watterich G, de Menezes R, Csanady M, Casadei B, Rudas L. Determinants of spontaneous baroreflex sensitivity in a healthy working population. Hypertension. 2001;37:911–6.

    Article  CAS  PubMed  Google Scholar 

  45. Tsuji H, Venditti FJ Jr, Manders ES, Evans JC, Larson MG, Feldman CL, et al. Determinants of heart rate variability. J Am Coll Cardiol. 1996;28:1539–46.

    Article  CAS  PubMed  Google Scholar 

  46. Billman GE. The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Front Physiol. 2013;4:26.

    PubMed  PubMed Central  Google Scholar 

  47. Tulppo MP, Mäkikallio TH, Takala TE, Seppänen T, Huikuri HV. Quantitative beat-to-beat analysis of heart rate dynamics during exercise. Am J Physiol. 1996;271(1 Pt 2):H244–52.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the late professor Paula Rantakallio (launch of NFBC1966), the participants in the 46-year study and the NFBC project center.

Funding

Supported by the Academy of Finland (no. 267435 and 285547), Finnish Foundation for Cardiovascular Research, European Union’s Horizon 2020 research and innovation programme (633595, EU H2020-PHC-2014 633595, DynaHEALTH, EU H2020-SC1-2016-2017, LIFECYCLE, EU H2020-HCO-2014, iHEALTH), Yrjö Jahnsson Foundation, Oulu University Scholarship Foundation and Paulo Foundation. NFBC1966 received financial support from University of Oulu (Grant No. 24000692), Oulu University Hospital (Grant No. 24301140) and ERDF European Regional Development Fund (Grant no. 539/2010 A31592).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelli Perkiömäki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perkiömäki, N., Auvinen, J., Tulppo, M.P. et al. Childhood growth patterns and cardiovascular autonomic modulation in midlife: Northern Finland 1966 Birth Cohort Study. Int J Obes 43, 2264–2272 (2019). https://doi.org/10.1038/s41366-019-0333-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-019-0333-0

Search

Quick links