Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Physiology

Salt in stools is associated with obesity, gut halophilic microbiota and Akkermansia muciniphila depletion in humans

Abstract

Background/objectives

High salt intake has been linked to several diseases including obesity and an increased risk of death; however, fecal salinity and the ability of salt to alter the gut microbiota, which was recently identified as an instrumental factor for health and disease, remains poorly explored.

Methods/subjects

We analyzed the fecal samples of 1326 human individuals for salinity by refractometry, 572 for gut microbiota by culturomics, and 164 by 16S rRNA-targeted metagenomics. Geographical origin, age, gender, and obesity were tested as predictors of fecal salinity and halophilic diversity. All halophilic isolates were characterized by taxonogenomics and their genome sequenced.

Results

Fecal salinity was associated with obesity independently of geographical origin, gender, and age. The first 2 human-associated halophilic archaeal members were isolated along with 64 distinct halophilic species, including 21 new species and 41 known in the environment but not in humans. No halophiles grow in less than 1.5% salinity. Above this threshold, the richness of the halophilic microbiota was correlated with fecal salinity (r = 0.58, p < 0.0001). 16S metagenomics linked high fecal salinity to decreased diversity (linear regression, p < .035) and a depletion in anti-obesity Akkermansia muciniphila and Bifidobacterium, specifically B. longum and B. adolescentis. Genomics analysis suggested that halophilic microbes are not only transient passengers but may be residents of the human gut.

Conclusions

High salt levels are associated with alteration of the gut microbial ecosystem and halophilic microbiota, as discovered during this study. Further studies should clarify if the gut microbiota alterations associated with high salt levels and the human halophilic microbiota could be causally related to human disease, such as obesity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kotchen TA, Cowley AW Jr., Frohlich ED. Salt in health and disease—a delicate balance. N Engl J Med. 2013;368:1229–37.

    Article  CAS  PubMed  Google Scholar 

  2. Hoffmann IS, Cubeddu LX. Salt and the metabolic syndrome. Nutr Metab Cardiovasc Dis. 2009;19:123–8.

    Article  CAS  PubMed  Google Scholar 

  3. Ma Y, He FJ, MacGregor GA. High salt intake: independent risk factor for obesity? Hypertension. 2015;66:843–9.

    Article  CAS  PubMed  Google Scholar 

  4. Joossens JV, Hill MJ, Elliott P, Stamler R, Lesaffre E, Dyer A, et al. Dietary salt, nitrate and stomach cancer mortality in 24 countries. European Cancer Prevention (ECP) and the INTERSALT Cooperative Research Group. Int J Epidemiol. 1996;25:494–504.

    Article  CAS  PubMed  Google Scholar 

  5. Yang Q, Liu T, Kuklina EV, Flanders WD, Hong Y, Gillespie C, et al. Sodium and potassium intake and mortality among US adults: prospective data from the Third National Health and Nutrition Examination Survey. Arch Intern Med. 2011;171:1183–91.

    Article  PubMed  Google Scholar 

  6. Erdem Y, Arici M, Altun B, Turgan C, Sindel S, Erbay B, et al. The relationship between hypertension and salt intake in Turkish population: SALTURK study. Blood Press. 2010;19:313–8.

    Article  CAS  PubMed  Google Scholar 

  7. Brown AD. Microbial water stress. Bacteriol Rev. 1976;40:803–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Joossens JV, Kesteloot H. Trends in systolic blood pressure, 24-hour sodium excretion, and stroke mortality in the elderly in Belgium. Am J Med. 1991;90:5S–11S.

    Article  CAS  PubMed  Google Scholar 

  9. Baud G, Daoudi M, Hubert T, Raverdy V, Pigeyre M, Hervieux E, et al. Bile diversion in Roux-en-Y gastric bypass modulates sodium-dependent glucose intestinal uptake. Cell Metab. 2016;23:547–53.

    Article  CAS  PubMed  Google Scholar 

  10. Wilck N, Olesen S, Matus M, Balogh A, Dechend R, Alm E, et al. A high-salt diet alters the composition of intestinal microbiota in mice. Hypertension. 2014;64:A321.

    Google Scholar 

  11. Wang C, Huang Z, Yu K, Ding R, Ye K, Dai C, et al. High-salt diet has a certain impact on protein digestion and gut microbiota: A sequencing and proteome combined study. Front Microbiol. 2017;8:1838.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Miranda PM, De Palma G, Serkis V, Lu J, Louis-Auguste MP, McCarville JL, et al. High salt diet exacerbates colitis in mice by decreasing Lactobacillus levels and butyrate production. Microbiome. 2018;6:57.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wilck N, Matus MG, Kearney SM, Olesen SW, Forslund K, Bartolomaeus H, et al. Salt-responsive gut commensal modulates TH17 axis and disease. Nature. 2017;551:585–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Million M, Angelakis E, Maraninchi M, Henry M, Giorgi R, Valero R, et al. Correlation between body mass index and gut concentrations of Lactobacillus reuteri, Bifidobacterium animalis, Methanobrevibacter smithii and Escherichia coli. Int J Obes. 2013;37:1460–6.

    Article  CAS  Google Scholar 

  15. Million M, Maraninchi M, Henry M, Armougom F, Richet H, Carrieri P, et al. Obesity-associated gut microbiota is enriched in Lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii. Int J Obes. 2012;36:817–25.

    Article  CAS  Google Scholar 

  16. Aguiar SLF, Miranda MCG, Guimaraes MAF, Santiago HC, Queiroz CP, Cunha PDS, et al. High-salt diet induces IL-17-dependent gut inflammation and exacerbates colitis in mice. Front Immunol. 2017;8:1969.

    Article  PubMed  Google Scholar 

  17. Million M, Angelakis E, Paul M, Armougom F, Leibovici L, Raoult D. Comparative meta-analysis of the effect of Lactobacillus species on weight gain in humans and animals. Microb Pathog. 2012;53:100–8.

    Article  PubMed  Google Scholar 

  18. Oxley AP, Lanfranconi MP, Wurdemann D, Ott S, Schreiber S, McGenity TJ, et al. Halophilic archaea in the human intestinal mucosa. Environ Microbiol. 2010;12:2398–410.

    Article  PubMed  Google Scholar 

  19. Lagier JC, Khelaifia S, Alou MT, Ndongo S, Dione N, Hugon P, et al. Culture of previously uncultured members of the human gut microbiota by culturomics. Nat Microbiol. 2016;1:16203.

    Article  CAS  PubMed  Google Scholar 

  20. Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA. 2013;110:9066–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schneeberger M, Everard A, Gomez-Valades AG, Matamoros S, Ramirez S, Delzenne NM, et al. Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice. Sci Rep. 2015;5:16643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Angelakis E, Armougom F, Million M, Raoult D. The relationship between gut microbiota and weight gain in humans. Future Microbiol. 2012;7:91–109.

    Article  PubMed  Google Scholar 

  23. DasSarma S, DasSarma P. Halophiles. Chichester, UK: John Wiley & Sons; 2012.

  24. Ma Y, Galinski EA, Grant WD, Oren A, Ventosa A. Halophiles 2010: life in saline environments. Appl Environ Microbiol. 2010;76:6971–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Seng P, Rolain JM, Fournier PE, La SB, Drancourt M, Raoult D. MALDI-TOF-mass spectrometry applications in clinical microbiology. FutureMicrobiol. 2010;5:1733–54.

    CAS  Google Scholar 

  26. Drancourt M, Bollet C, Carlioz A, Martelin R, Gayral JP, Raoult D. 16S ribosomal DNA sequence analysis of a large collection of environmental and clinical unidentifiable bacterial isolates. J Clin Microbiol. 2000;38:3623–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Million M, Tidjani AM, Khelaifia S, Bachar D, Lagier JC, Dione N, et al. Increased gut redox and depletion of anaerobic and methanogenic prokaryotes in severe acute malnutrition. Sci Rep. 2016;6:26051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.

    Article  CAS  PubMed  Google Scholar 

  30. Cavalli-Sforza LL. The DNA revolution in population genetics. Trends Genet. 1998;14:60–5.

    Article  CAS  PubMed  Google Scholar 

  31. Khelaifia S, Raoult D. Haloferax massiliensis sp. nov., the first human-associated halophilic archaea. New Microbes New Infect. 2016;12:96–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Angelakis E, Yasir M, Bachar D, Azhar EI, Lagier JC, Bibi F, et al. Gut microbiome and dietary patterns in different Saudi populations and monkeys. Sci Rep. 2016;6:32191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12:R60.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tan TG, Sefik E, Geva-Zatorsky N, Kua L, Naskar D, Teng F, et al. Identifying species of symbiont bacteria from the human gut that, alone, can induce intestinal Th17 cells in mice. Proc Natl Acad Sci USA. 2016;113:41–E8150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schell MA, Karmirantzou M, Snel B, Vilanova D, Berger B, Pessi G, et al. The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc Natl Acad Sci USA. 2002;99:14422–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lagier JC, Armougom F, Million M, Hugon P, Pagnier I, Robert C, et al. Microbial culturomics: paradigm shift in the human gut microbiome study. Clin Microbiol Infect. 2012;18:1185–93.

    Article  CAS  PubMed  Google Scholar 

  37. Lang JM, Eisen JA, Zivkovic AM. The microbes we eat: abundance and taxonomy of microbes consumed in a day’s worth of meals for three diet types. Peer J. 2014;2:e659.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wei Y, Lu C, Chen J, Cui G, Wang L, Yu T, et al. High salt diet stimulates gut Th17 response and exacerbates TNBS-induced colitis in mice. Oncotarget. 2017;8:70–82.

    PubMed  Google Scholar 

  39. Shen W, Shen M, Zhao X, Zhu H, Yang Y, Lu S, et al. Anti-obesity effect of capsaicin in mice fed with high-fat diet is associated with an increase in population of the gut bacterium Akkermansia muciniphila. Front Microbiol. 2017;8:272.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Leshem M, Saadi A, Alem N, Hendi K. Enhanced salt appetite, diet and drinking in traditional Bedouin women in the Negev. Appetite. 2008;50:71–82.

    Article  PubMed  Google Scholar 

  41. Khan MS, Sasidharan TO, Ghosh PK. Water regulation in Barmer goat of the Rajasthan desert. Experientia. 1979;35:1185–6.

    Article  CAS  PubMed  Google Scholar 

  42. Shields R, Mulholland A, Elmslie R. Action of aldosterone upon the intestinal transport of potassium, sodium, and water. Gut. 1966;7:11.

    Article  Google Scholar 

  43. Lupan I, Ianc MB, Ochis C, Popescu O. The evidence of contaminant bacterial DNA in several commercial Taq polymerases. Rom Biotechnol Lett. 2013;18:6.

    Google Scholar 

  44. Lagier JC, Dubourg G, Million M, Cadoret F, Bilen M, Fenollar F, et al. Culturing the human microbiota and culturomics. Nat. Revi. Microbiol. 2018 In press.

  45. Golden MH. Oedematous malnutrition. Br Med Bull. 1998;54:433–44.

    Article  CAS  PubMed  Google Scholar 

  46. Collaborators GBDO, Afshin A, Forouzanfar MH, Reitsma MB, Sur P, Estep K, et al. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017;377:13–27.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the culturomics team for excellent growing work. We wish to honor here the memory of Professor Ogobara Doumbo, who died during the revision of this paper, who was a collaborator with unequaled human and professional qualities. This work has received financial support from the French Government through the Agence Nationale pour la Recherche (ANR), including the “Programme d’Investissement d’Avenir” under the reference Méditerranée Infection 10-IAHU-03. This work was supported by Région Provence Alpes Côte d’Azur and European funding FEDER PRIMMI (Fonds Européen de Développement Régional - Plateformes de Recherche et d’Innovation Mutualisées Méditerranée Infection). We thank Magdalen Lardiere for English reviewing.

Author contributions:

E.H.S., S.K., B.S. and F.B. analysed salinity, isolated the strains, and described the new halophilic species; D.B., V.M., C.R. and A.L. performed the metagenomics sequencing and bio-informatic analyses; E.I.A., S.K., D.M., O.D. and C.S. collected samples and information from included individuals; M.M., E.I.A. and D.R. wrote the manuscript; M.S., M.M. and E.H.S. analysed the data; J.C.L. supervised the study and D.R. conceived and supervised the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Raoult.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seck, E.H., Senghor, B., Merhej, V. et al. Salt in stools is associated with obesity, gut halophilic microbiota and Akkermansia muciniphila depletion in humans. Int J Obes 43, 862–871 (2019). https://doi.org/10.1038/s41366-018-0201-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-018-0201-3

This article is cited by

Search

Quick links