Animal Models

Konjaku flour reduces obesity in mice by modulating the composition of the gut microbiota



Changes in the intestinal flora composition is referred to as dysbiosis, which is related to obesity development, thus supporting the potential roles of nutrients acting on intestinal flora to exert salutary effects on energetic metabolism of host. Dietary fiber has been known to affect the composition of intestinal flora. The aim of the present study was to investigate the functional effects of konjac flour (KF) on obesity control in respect to improving inflammation, metabolism, and intestinal barrier function, and the possible association of the effects with intestinal flora composition changes.


Mice (n = 30) were randomly divided into control group (n = 10), high-fat-diet (HFD) group (n = 10), and KF intervention group (n = 10), followed by feeding for 12 weeks and with adding a KF daily supplementation for the treatment group. Body weight, fat accumulation, inflammation, and energetic metabolism markers in multiple tissues and the gut microbiota of the mice were examined at the end of the experiment.


The KF supplementation significantly reduced the gains in weight, fat mass, as well as adipocyte size of HFD mice and lowered the serum TC, leptin (LEP), thiobarbituric acid-reacting substance (TBARS), IL-6, and lipopolysaccharide (LPS) levels in HFD mice. KF also upregulated the expression of intestinal mucosa protein gene Intection and tight junction ZO-1 in HFD mice, as well as upregulate the expression of energy metabolism genes PPARα and CPT-1 as well as the fat metabolism gene HLS in livers and fat tissues, and downregulate that of fat synthesis gene PPARγ (p < 0.05). The KF treatment increases the α-diversity and change the β-diversity of the intestinal microflora in HFD mice and boosted the abundances of some obesity-related beneficial microorganisms (such as Megasphaera elsdenii) in the intestinal microflora of HFD mice, while reduced those of harmful microorganisms (such as Alistipes, Alloprevotella, Bacteroides acidifaciens, and Parabacteroides goldsteinii). The abundance of Alistipes was positively correlated with weight, fat mass, serum TC, TG, LEP, IL-6, and LPS contents as well as PPARγ gene expression; while notably and negatively related to the expression of CPT-1 and HLS genes (p < 0.01). KF remarkably increased the abundance of Aerococcaceae, while reduced that of Alistipes finegoldii (p < 0.01).


Supplementation with KF achieves favorable effects on treating obesity, improving inflammatory response, metabolism, and intestinal barrier function, by regulating intestinal microfloral structure in HFD-fed mice.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Hoyt CL, Burnette JL, Austergussman L. “Obesity is a disease”: examining the self-regulatory impact of this public-health message. Psychol Sci. 2014;25:997.

    PubMed  Google Scholar 

  2. 2.

    Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S, Oyadomari S, et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature. 2013;499:97–101.

    CAS  PubMed  Google Scholar 

  3. 3.

    Osborn O, Olefsky JM. The cellular and signaling networks linking the immune system and metabolism in disease. Nat Med. 2012;18:363–74.

    CAS  PubMed  Google Scholar 

  4. 4.

    Moustafa ES, Froguel P. From obesity genetics to the future of personalized obesity therapy. Nat Rev Endocrinol. 2013;9:402.

    Google Scholar 

  5. 5.

    Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013;341:1241214.

    PubMed  Google Scholar 

  6. 6.

    Dethlefsen L, Mcfall-Ngai, Amp M, Relman DA. An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature. 2007;449:811–8.

    CAS  PubMed  Google Scholar 

  7. 7.

    Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA. 2004;101:15718.

    PubMed  Google Scholar 

  8. 8.

    Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–31.

    PubMed  Google Scholar 

  9. 9.

    Goodman AL, Kallstrom G, Faith JJ, Reyes A, Moore A, Dantas G, et al. Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice. Proc Natl Acad Sci USA. 2011;108:6252–7.

    CAS  PubMed  Google Scholar 

  10. 10.

    Cani PD, Possemiers S, Wiele TVD, Guiot Y, Everard A, Rottier O, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut. 2009;58:1091.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet–induced obesity and diabetes in mice. Diabetes. 2008;57:1470–81.

    CAS  PubMed  Google Scholar 

  12. 12.

    Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56:1761.

    CAS  PubMed  Google Scholar 

  13. 13.

    Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest. 2005;115:1111–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Kovatcheva-Datchary P, Arora T. Nutrition, the gut microbiome and the metabolic syndrome. Best Pract Res Clin Gastroenterol. 2013;27:59–72.

    CAS  PubMed  Google Scholar 

  15. 15.

    Dewulf EM, Cani PD, Claus SP, Susana F, Puylaert Philippe GB, Neyrinck AM, et al. Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut. 2013;62:1112–21.

    CAS  PubMed  Google Scholar 

  16. 16.

    Nakamura YK, Omaye ST. Metabolic diseases and pro- and prebiotics: mechanistic insights. Nutr Metab. 2012;9:60.

    CAS  Google Scholar 

  17. 17.

    Everard A, Lazarevic V, Derrien M, Girard M, Muccioli GG, Neyrinck AM, et al. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes. 2011;60:2775–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Chen HL, Cheng HC, Liu YJ, Liu SY, Wu WT. Konjac acts as a natural laxative by increasing stool bulk and improving colonic ecology in healthy adults. Nutrition. 2006;22:1112–9.

    CAS  PubMed  Google Scholar 

  19. 19.

    Li B, Xia J, Wang Y, Xie B. Grain-size effect on the structure and antiobesity activity of konjac flour. J Agric Food Chem. 2005;53:7404–7.

    CAS  PubMed  Google Scholar 

  20. 20.

    Sun HQ, Tan CQ, Wei HK, Zou Y, Long G, Ao JT, et al. Effects of different amounts of konjac flour inclusion in gestation diets on physio-chemical properties of diets, postprandial satiety in pregnant sows, lactation feed intake of sows and piglet performance. Anim Reprod Sci. 2015;152:55–64.

    CAS  PubMed  Google Scholar 

  21. 21.

    Young W, Roy NC, Lee J, Lawley B, Otter D, Henderson G, et al. Bowel microbiota moderate host physiological responses to dietary konjac in weanling rats. J Nutr. 2013;143:1052–60.

    CAS  PubMed  Google Scholar 

  22. 22.

    Tan CQ, Wei HK, Sun HQ, Long G, Ao JT, Jiang SW, et al. Effects of supplementing sow diets during two gestations with konjac flour and Saccharomyces boulardii on constipation in peripartal period, lactation feed intake and piglet performance. Anim Feed Sci Technol. 2015;210:254–62.

    CAS  Google Scholar 

  23. 23.

    Wu CF, Dong YY, Li JJ, Tang XH, Huang ZX. Study on the preparation of Konjac Oligo-glucomannan by β-mannanase. Biotechnol Bull. 2010;2010:118–22.

    Google Scholar 

  24. 24.

    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Sato M, Uzu K, Yoshida T, Hamad EM, Kawakami H, Matsuyama H, et al. Effects of milk fermented by Lactobacillus gasseri SBT2055 on adipocyte size in rats. Br J Nutr. 2008;99:1013.

    CAS  PubMed  Google Scholar 

  26. 26.

    Neyrinck AM, Hée VFV, Piront N, Backer FD, Toussaint O, Cani PD, et al. Wheat-derived arabinoxylan oligosaccharides with prebiotic effect increase satietogenic gut peptides and reduce metabolic endotoxemia in diet-induced obese mice. Nutr Diabetes. 2012;2:e28.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Keithley JK, Barbara S, Mikolaitis SL, Mark DM, Zeller JM, Lou F, et al. Safety and efficacy of glucomannan for weight loss in overweight and moderately obese adults. J Obes. 2013;2013:610908.

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    SáInz N, Barrenetxe J, Morenoaliaga MJ, MartíNez JA. Leptin resistance and diet-induced obesity: central and peripheral actions of leptin. Metabolism. 2015;64:35–46.

    PubMed  Google Scholar 

  29. 29.

    Correia ML, Haynes WG. Leptin, obesity and cardiovascular disease. Curr Opin Nephrol Hypertens. 2004;13:215–23.

    PubMed  Google Scholar 

  30. 30.

    Halliwell B, Chirico S. Lipid peroxidation: its mechanism, measurement, and significance. Am J Clin Nutr. 1993;57:715S.

    CAS  PubMed  Google Scholar 

  31. 31.

    Kang Y, Zhang X, Cai Y, Su J, Kong X. Gut microbiota and metabolic disease: from pathogenesis to new therapeutic strategies. Allergol Immunopathol. 2017;28:1.

    CAS  Google Scholar 

  32. 32.

    Musso G, Gambino R, Cassader M. Interactions between gut microbiota and host metabolism predisposing to obesity and diabetes. Annu Rev Med. 2011;62:361–80.

    CAS  PubMed  Google Scholar 

  33. 33.

    Ohland CL, Macnaughton WK. Probiotic bacteria and intestinal epithelial barrier function. Am J Physiol Gastrointest Liver Physiol. 2010;298:807–19.

    Google Scholar 

  34. 34.

    Zhang Y, Ma K, Song S, Elam MB, Cook GA, Park EA. Peroxisomal proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1 alpha) enhances the thyroid hormone induction of carnitine palmitoyltransferase I (CPT-I alpha). J Biol Chem. 2004;279:53963–71.

    CAS  PubMed  Google Scholar 

  35. 35.

    Finck BN, Kelly DP. Peroxisome proliferator–activated receptor γ coactivator-1 (PGC-1) regulatory cascade in cardiac physiology and disease. Circulation. 2007;115:2540.

    PubMed  Google Scholar 

  36. 36.

    Preiss-Landl K, Zimmermann R, Hämmerle G, Zechner R. Lipoprotein lipase: the regulation of tissue specific expression and its role in lipid and energy metabolism. Curr Opin Lipidol. 2002;13:471.

    CAS  PubMed  Google Scholar 

  37. 37.

    Lafontan M, Langin D. Lipolysis and lipid mobilization in human adipose tissue. Prog Lipid Res. 2009;48:275–97.

    CAS  Google Scholar 

  38. 38.

    Wang J, Jiang M, Xia JH, Li X, Yi GH, Yuan CG. The role of PPARδ in lipid metabolism. Chem Life. 2008;28:175–7.

    CAS  Google Scholar 

  39. 39.

    Clarke SF, Murphy EF, O’Sullivan O, Ross RP, O’Toole PW, Shanahan F, et al. Targeting the microbiota to address diet-induced obesity: a time dependent challenge. PLoS ONE. 2013;8:e65790.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Dinh DM, Volpe GE, Duffalo C, Bhalchandra S, Tai AK, Kane AV, et al. Intestinal microbiota, microbial translocation, and systemic inflammation in chronic HIV infection. J Infect Dis. 2015;211:19–27.

    CAS  PubMed  Google Scholar 

  41. 41.

    Mchardy IH, Li X, Tong M, Ruegger P, Jacobs J, Borneman J, et al. HIV Infection is associated with compositional and functional shifts in the rectal mucosal microbiota. Microbiome. 2013;1:1–12.

    Google Scholar 

  42. 42.

    Xu J, Lian F, Zhao L, Zhao Y, Chen X, Zhang X, et al. Structural modulation of gut microbiota during alleviation of type 2 diabetes with a Chinese herbal formula. ISME J. 2015;9:552–62.

    PubMed  Google Scholar 

  43. 43.

    Saulnier DM, Riehle K, Mistretta TA, Diaz MA, Mandal D, Raza S, et al. Gastrointestinal microbiome signatures of pediatric patients with irritable bowel syndrome. Gastroenterology. 2011;141:1782.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Rautio M, Eerola E, Väisänen-Tunkelrott ML, Molitoris D, Lawson P, Collins MD, et al. Reclassification of Bacteroides putredinis (Weinberg et al., 1937) in a new genus Alistipes gen. nov., as Alistipes putredinis comb. nov., and description of Alistipes finegoldii sp. nov., from human sources. Syst Appl Microbiol. 2003;26:182–8.

    PubMed  Google Scholar 

  45. 45.

    Louis S, Tappu RM, Damms-Machado A, Huson DH, Bischoff SC. Characterization of the gut microbial community of obese patients following a weight-loss intervention using whole metagenome shotgun sequencing. PLoS ONE. 2016;11:e0149564.

    PubMed  PubMed Central  Google Scholar 

  46. 46.

    Petriz BA, Castro AP, Almeida JA, Gomes CP, Fernandes GR, Kruger RH, et al. Exercise induction of gut microbiota modifications in obese, non-obese and hypertensive rats. BMC Genomics. 2014;15:511.

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Yanagibashi T, Hosono A, Oyama A, Tsuda M, Suzuki A, Hachimura S, et al. IgA production in the large intestine is modulated by a different mechanism than in the small intestine: Bacteroides acidifaciens promotes IgA production in the large intestine by inducing germinal center formation and increasing the number of IgA + B cells. Immunobiology. 2013;218:645–51.

    CAS  PubMed  Google Scholar 

  48. 48.

    Peterson DA, Mcnulty NP, Guruge JL, Gordon JI. IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe. 2007;2:328.

    CAS  PubMed  Google Scholar 

  49. 49.

    Rodriguezsegade S, Camiña MF, Carnero A, Lorenzo MJ, Alban A, Quinteiro C, et al. High serum IgA concentrations in patients with diabetes mellitus: agewise distribution and relation to chronic complications. Clin Chem. 1996;42:1064–7.

    CAS  Google Scholar 

  50. 50.

    Hotamisligil GS, Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2007;444:860–7.

    Google Scholar 

  51. 51.

    Liu Z, Chen Z, Guo H, He D, Zhao H, Wang Z, et al. The modulatory effect of infusions of green tea, oolong tea, and black tea on gut microbiota in high-fat-induced obese mice. Food Funct. 2016;7:4869–79.

    CAS  PubMed  Google Scholar 

  52. 52.

    Patrone V, Vajana E, Minuti A, Callegari ML, Federico A, Loguercio C. et al. Postoperative changes in fecal bacterial communities and fermentation products in obese patients undergoing bilio-intestinal bypass. Front Microbiol. 2016;7:200

    PubMed  PubMed Central  Google Scholar 

  53. 53.

    Federico A, Dallio M, Tolone S, Gravina AG, Patrone V, Romano M, et al. Gastrointestinal hormones, intestinal microbiota and metabolic homeostasis in obese patients: effect of bariatric surgery. In Vivo. 2016;30:321.

    CAS  PubMed  Google Scholar 

  54. 54.

    Shetty SA, Marathe NP, Lanjekar V, Ranade D, Shouche YS. Comparative genome analysis of Megasphaera sp. reveals niche specialization and its potential role in the human gut. PLoS ONE. 2013;8:e79353.

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Marounek M, Fliegrova K, Bartos S. Metabolism and some characteristics of ruminal strains of Megasphaera elsdenii. Appl Environ Microbiol. 1989;55:1570–3.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


We thank Engineering Research Center of Sustainable Development and Utilization of Biomass Energy Ministry of Education for supplying KF.

Author information



Corresponding author

Correspondence to Xiangyang Kong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kang, Y., Li, Y., Du, Y. et al. Konjaku flour reduces obesity in mice by modulating the composition of the gut microbiota. Int J Obes 43, 1631–1643 (2019).

Download citation

Further reading