Physiology

Overfed but undernourished: recognizing nutritional inadequacies/deficiencies in patients with overweight or obesity

Abstract

Overweight and obesity are highly prevalent throughout the world and can adversely affect the nutritional status of individuals. Studies have shown that many people with obesity have inadequate intake of iron, calcium, magnesium, zinc, copper, folate and vitamins A and B12, likely as a result of poor diet quality. Nutritional inadequacies or deficiencies may also occur due to altered pharmacokinetics in the individual with obesity and due to interactions in those with overweight or obesity with various pharmaceuticals. However, it has been demonstrated that the adult population in the United States as a whole is deficient in certain micronutrients as a result of the availability and overconsumption of high-calorie, low-nutrient processed foods. Poor nutrition may contribute to the development of certain chronic conditions, such as type 2 diabetes, which is already more prevalent in those with obesity. Clinicians need to be aware of these gaps, particularly in those individuals with obesity who are undergoing bariatric surgery or taking pharmaceutical products long term to facilitate weight loss. Patients with overweight or obesity likely struggle to achieve a balanced diet and may benefit from consultation with a dietitian. Along with providing recommendations for healthy eating and exercise, supplementation with specific micronutrients or multivitamins should be considered for individuals at the highest risk for or with established deficiencies. Further research is needed to understand the factors underlying nutritional inadequacies in individuals with overweight or obesity, as well as the outcomes of treatment strategies employed to address them.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1

References

  1. 1.

    Hurt RT, Frazier TH, McClave SA, Kaplan LM. Obesity epidemic: overview, pathophysiology, and the intensive care unit conundrum. JPEN J Parenter Enter Nutr. 2011;35(5 Suppl):4s–13s.

    CAS  Google Scholar 

  2. 2.

    Swinburn BA, Sacks G, Hall KD, McPherson K, Finegood DT, Moodie ML, et al. The global obesity pandemic: shaped by global drivers and local environments. Lancet. 2011;378:804–14.

    PubMed  Google Scholar 

  3. 3.

    Fryar CD, Carroll MD, Ogden CL. Prevalence of overweight, obesity, and extreme obesity among adults aged 20 and over: United States, 1960–1962 through 2013–2014. NCHS Health E-Stats; Centers for Disease Control and Prevention. http://www.cdc.gov/nchs/data/hestat/obesity_adult_13_14/obesity_adult_13_14.pdf. Accessed 25 Oct 2017.

  4. 4.

    Xanthakos SA. Nutritional deficiencies in obesity and after bariatric surgery. Pediatr Clin North Am. 2009;56:1105–21.

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Do Canadian adults meet their nutrient requirements through food intake alone? Health Canada. http://www.hc-sc.gc.ca/fn-an/alt_formats/pdf/surveill/nutrition/commun/art-nutr-adult-eng.pdf. Accessed 25 Oct 2017.

  6. 6.

    Scientific Report of the 2015 Dietary Guidelines Advisory Committee. United States Department of Health and Human Services; United States Department of Agriculture: Washington, DC, 2015.

  7. 7.

    Cutler DM, Glaeser EL, Shapiro JM. Why have Americans become more obese? J Econ Perspect. 2003;17:93–118.

    Google Scholar 

  8. 8.

    Via M. The malnutrition of obesity: micronutrient deficiencies that promote diabetes. ISRN Endocrinol. 2012;2012:103472.

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    Mousa A, Naderpoor N, de Courten MP, Scragg R, de Courten B. 25-hydroxyvitamin D is associated with adiposity and cardiometabolic risk factors in a predominantly vitamin D-deficient and overweight/obese but otherwise healthy cohort. J Steroid Biochem Mol Biol. 2017;173:258–64.

    PubMed  Google Scholar 

  10. 10.

    De Baerdemaeker LEC, Mortier EP. Struys MMRF. Pharmacokinetics in obese patients. Contin Educ Anaesth Crit Care Pain. 2004;4:152–5.

    Google Scholar 

  11. 11.

    Paddon-Jones D, Westman E, Mattes RD, Wolfe RR, Astrup A, Westerterp-Plantenga M. Protein, weight management, and satiety. Am J Clin Nutr. 2008;87:1558s–1561s.

    CAS  PubMed  Google Scholar 

  12. 12.

    Barrea L, Nappi F, Di Somma C, Savanelli MC, Falco A, Balato A, et al. Environmental risk factors in psoriasis: the point of view of the nutritionist. Int J Environ Res Public Health. 2016;13:743.

    PubMed Central  Google Scholar 

  13. 13.

    Lyons CL, Kennedy EB, Roche HM. Metabolic inflammation-differential modulation by dietary constituents. Nutrients. 2016;8:247.

    PubMed Central  Google Scholar 

  14. 14.

    Fleming P, Kraft J, Gulliver WP, Lynde C. The relationship of obesity with the severity of psoriasis: a systematic review. J Cutan Med Surg. 2015;19:450–6.

    PubMed  Google Scholar 

  15. 15.

    Giugliano D, Ceriello A, Esposito K. The effects of diet on inflammation: emphasis on the metabolic syndrome. J Am Coll Cardiol. 2006;48:677–85.

    CAS  PubMed  Google Scholar 

  16. 16.

    Sanchez A, Rojas P, Basfi-Fer K, Carrasco F, Inostroza J, Codoceo J, et al. Micronutrient deficiencies in morbidly obese women prior to bariatric surgery. Obes Surg. 2016;26:361–8.

    PubMed  Google Scholar 

  17. 17.

    de Luis DA, Pacheco D, Izaola O, Terroba MC, Cuellar L, Cabezas G. Micronutrient status in morbidly obese women before bariatric surgery. Surg Obes Relat Dis. 2013;9:323–7.

    PubMed  Google Scholar 

  18. 18.

    Lefebvre P, Letois F, Sultan A, Nocca D, Mura T, Galtier F. Nutrient deficiencies in patients with obesity considering bariatric surgery: a cross-sectional study. Surg Obes Relat Dis. 2014;10:540–6.

    PubMed  Google Scholar 

  19. 19.

    Agarwal S, Reider C, Brooks JR, Fulgoni VLI. Comparison of prevalence of inadequate nutrient intake based on body weight status of adults in the United States: an analysis of NHANES 2001-2008. J Am Coll Nutr. 2015;34:126–34.

    PubMed  Google Scholar 

  20. 20.

    Zuckerman M, Greller HA, Babu KM. A review of the toxicologic implications of obesity. J Med Toxicol. 2015;11:342–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Blouin RA, Kolpek JH, Mann HJ. Influence of obesity on drug disposition. Clin Pharm. 1987;6:706–14.

    CAS  PubMed  Google Scholar 

  22. 22.

    Blum M, Dolnikowski G, Seyoum E, Harris SS, Booth SL, Peterson J, et al. Vitamin D(3) in fat tissue. Endocrine. 2008;33:90–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Wortsman J, Matsuoka LY, Chen TC, Lu Z, Holick MF. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr. 2000;72:690–3.

    CAS  PubMed  Google Scholar 

  24. 24.

    Handelman GJ, Epstein WL, Peerson J, Spiegelman D, Machlin LJ, Dratz EA. Human adipose alpha-tocopherol and gamma-tocopherol kinetics during and after 1 y of alpha-tocopherol supplementation. Am J Clin Nutr. 1994;59:1025–32.

    CAS  PubMed  Google Scholar 

  25. 25.

    Liel Y, Ulmer E, Shary J, Hollis BW, Bell NH. Low circulating vitamin D in obesity. Calcif Tissue Int. 1988;43:199–201.

    CAS  PubMed  Google Scholar 

  26. 26.

    Drincic AT, Armas LA, Van Diest EE, Heaney RP. Volumetric dilution, rather than sequestration best explains the low vitamin D status of obesity. Obesity (Silver Spring, Md). 2012;20:1444–8.

    CAS  Google Scholar 

  27. 27.

    Shankar P, Boylan M, Sriram K. Micronutrient deficiencies after bariatric surgery. Nutrition. 2010;26:1031–7.

    CAS  PubMed  Google Scholar 

  28. 28.

    Rohner F, Zimmermann M, Jooste P, Pandav C, Caldwell K, Raghavan R, et al. Biomarkers of nutrition for development—iodine review. J Nutr. 2014;144:1322s–1342s.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Tremblay F, Lavigne C, Jacques H, Marette A. Role of dietary proteins and amino acids in the pathogenesis of insulin resistance. Annu Rev Nutr. 2007;27:293–310.

    CAS  PubMed  Google Scholar 

  30. 30.

    Westerterp-Plantenga MS, Lejeune MP. Protein intake and body-weight regulation. Appetite. 2005;45:187–90.

    CAS  PubMed  Google Scholar 

  31. 31.

    Physical activity. Office of Disease Prevention and Health Promotion. https://www.healthypeople.gov/2020/topics-objectives/topic/physical-activity. Accessed 25 Oct 2017.

  32. 32.

    Kant AK. Consumption of energy-dense, nutrient-poor foods by adult Americans: nutritional and health implications. The third National Health and Nutrition Examination Survey, 1988-1994. Am J Clin Nutr. 2000;72:929–36.

    CAS  PubMed  Google Scholar 

  33. 33.

    Kant AK. Reported consumption of low-nutrient-density foods by American children and adolescents: nutritional and health correlates, NHANES III, 1988 to 1994. Arch Pediatr Adolesc Med. 2003;157:789–96.

    PubMed  Google Scholar 

  34. 34.

    Hampl JS, Betts NM. Comparisons of dietary intake and sources of fat in low- and high-fat diets of 18- to 24-year-olds. J Am Diet Assoc. 1995;95:893–7.

    CAS  PubMed  Google Scholar 

  35. 35.

    Keller KL, Kirzner J, Pietrobelli A, St-Onge MP, Faith MS. Increased sweetened beverage intake is associated with reduced milk and calcium intake in 3- to 7-year-old children at multi-item laboratory lunches. J Am Diet Assoc. 2009;109:497–501.

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Heaney RP. Nutrients, endpoints, and the problem of proof. J Nutr. 2008;138:1591–5.

    CAS  PubMed  Google Scholar 

  37. 37.

    Ames BN. Low micronutrient intake may accelerate the degenerative diseases of aging through allocation of scarce micronutrients by triage. Proc Natl Acad Sci USA. 2006;103:17589–94.

    CAS  PubMed  Google Scholar 

  38. 38.

    McCann JC, Ames BN. Vitamin K, an example of triage theory: is micronutrient inadequacy linked to diseases of aging? Am J Clin Nutr. 2009;90:889–907.

    CAS  PubMed  Google Scholar 

  39. 39.

    Overweight & obesity statistics. National Institute of Diabetes and Digestive and Kidney Diseases. https://www.niddk.nih.gov/health-information/health-statistics/Pages/overweight-obesity-statistics.aspx. Accessed 25 Oct 2017.

  40. 40.

    Niswender K. Diabetes and obesity: therapeutic targeting and risk reduction—a complex interplay. Diabetes Obes Metab. 2010;12:267–87.

    PubMed  Google Scholar 

  41. 41.

    Ford ES, Williamson DF, Liu S. Weight change and diabetes incidence: findings from a national cohort of US adults. Am J Epidemiol. 1997;146:214–22.

    CAS  PubMed  Google Scholar 

  42. 42.

    Defronzo RA. Banting Lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes. 2009;58:773–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Hu FB, Manson JE, Stampfer MJ, Colditz G, Liu S, Solomon CG, et al. Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. N Engl J Med. 2001;345:790–7.

    CAS  PubMed  Google Scholar 

  44. 44.

    Moize V, Deulofeu R, Torres F, de Osaba JM, Vidal J. Nutritional intake and prevalence of nutritional deficiencies prior to surgery in a Spanish morbidly obese population. Obes Surg. 2011;21:1382–8.

    PubMed  Google Scholar 

  45. 45.

    Pham PC, Pham PM, Pham SV, Miller JM, Pham PT. Hypomagnesemia in patients with type 2 diabetes. Clin J Am Soc Nephrol. 2007;2:366–73.

    CAS  PubMed  Google Scholar 

  46. 46.

    Tremblay A, Chaput JP. About unsuspected potential determinants of obesity. Appl Physiol Nutr Metab. 2008;33:791–6.

    PubMed  Google Scholar 

  47. 47.

    Garcia OP, Long KZ, Rosado JL. Impact of micronutrient deficiencies on obesity. Nutr Rev. 2009;67:559–72.

    PubMed  Google Scholar 

  48. 48.

    Astrup A, Bugel S. Micronutrient deficiency in the aetiology of obesity. Int J Obes (Lond). 2010;34:947–8.

    CAS  Google Scholar 

  49. 49.

    Pannacciulli N, Del Parigi A, Chen K, Le DS, Reiman EM, Tataranni PA. Brain abnormalities in human obesity: a voxel-based morphometric study. Neuroimage. 2006;31:1419–25.

    PubMed  Google Scholar 

  50. 50.

    Elias MF, Elias PK, Sullivan LM, Wolf PA, D’Agostino RB. Obesity, diabetes and cognitive deficit: The Framingham Heart Study. Neurobiol Aging. 2005; 26(Suppl 1):11–16.

    PubMed  Google Scholar 

  51. 51.

    Waldstein SR, Katzel LI. Interactive relations of central versus total obesity and blood pressure to cognitive function. Int J Obes (Lond). 2006;30:201–7.

    CAS  Google Scholar 

  52. 52.

    Walker JM, Harrison FE. Shared neuropathological characteristics of obesity, type 2 diabetes and Alzheimer’s disease: impacts on cognitive decline. Nutrients. 2015;7:7332–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Dahl AK, Hassing LB. Obesity and cognitive aging. Epidemiol Rev. 2013;35:22–32.

    PubMed  Google Scholar 

  54. 54.

    Benedict C, Brooks SJ, Kullberg J, Burgos J, Kempton MJ, Nordenskjold R, et al. Impaired insulin sensitivity as indexed by the HOMA score is associated with deficits in verbal fluency and temporal lobe gray matter volume in the elderly. Diabetes Care. 2012;35:488–94.

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Bruehl H, Sweat V, Hassenstab J, Polyakov V, Convit A. Cognitive impairment in nondiabetic middle-aged and older adults is associated with insulin resistance. J Clin Exp Neuropsychol. 2010;32:487–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Grandone A, Marzuillo P, Perrone L, Del Giudice EM. Iron metabolism dysregulation and cognitive dysfunction in pediatric obesity: is there a connection? Nutrients. 2015;7:9163–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Grima NA, Pase MP, Macpherson H, Pipingas A. The effects of multivitamins on cognitive performance: a systematic review and meta-analysis. J Alzheimers Dis. 2012;29:561–9.

    CAS  PubMed  Google Scholar 

  58. 58.

    Harris E, Macpherson H, Vitetta L, Kirk J, Sali A, Pipingas A. Effects of a multivitamin, mineral and herbal supplement on cognition and blood biomarkers in older men: a randomised, placebo-controlled trial. Hum Psychopharmacol. 2012;27:370–7.

    CAS  PubMed  Google Scholar 

  59. 59.

    Chan A, Remington R, Kotyla E, Lepore A, Zemianek J, Shea TB. A vitamin/nutriceutical formulation improves memory and cognitive performance in community-dwelling adults without dementia. J Nutr Health Aging. 2010;14:224–30.

    CAS  PubMed  Google Scholar 

  60. 60.

    Hasan S, Fatima N, Bilal N, Suhail N, Fatima S, Morgan EN, et al. Effect of chronic unpredictable stress on short term dietary restriction and its modulation by multivitamin-mineral supplementation. Appetite. 2013;65:68–74.

    PubMed  Google Scholar 

  61. 61.

    Sharifi N, Mahdavi R, Ebrahimi-Mameghani M. Perceived barriers to weight loss programs for overweight or obese women. Health Promot Perspect. 2013;3:11–22.

    PubMed  PubMed Central  Google Scholar 

  62. 62.

    Harris E, Kirk J, Rowsell R, Vitetta L, Sali A, Scholey AB, et al. The effect of multivitamin supplementation on mood and stress in healthy older men. Hum Psychopharmacol. 2011;26:560–7.

    CAS  PubMed  Google Scholar 

  63. 63.

    Kennedy DO, Veasey R, Watson A, Dodd F, Jones E, Maggini S, et al. Effects of high-dose B vitamin complex with vitamin C and minerals on subjective mood and performance in healthy males. Psychopharmacol (Berl). 2010;211:55–68.

    CAS  Google Scholar 

  64. 64.

    Long SJ, Benton D. A double-blind trial of the effect of docosahexaenoic acid and vitamin and mineral supplementation on aggression, impulsivity, and stress. Hum Psychopharmacol. 2013;28:238–47.

    CAS  PubMed  Google Scholar 

  65. 65.

    Long SJ, Benton D. Effects of vitamin and mineral supplementation on stress, mild psychiatric symptoms, and mood in nonclinical samples: a meta-analysis. Psychosom Med. 2013;75:144–53.

    CAS  PubMed  Google Scholar 

  66. 66.

    Carroll D, Ring C, Suter M, Willemsen G. The effects of an oral multivitamin combination with calcium, magnesium, and zinc on psychological well-being in healthy young male volunteers: a double-blind placebo-controlled trial. Psychopharmacol (Berl). 2000;150:220–5.

    CAS  Google Scholar 

  67. 67.

    Stough C, Scholey A, Lloyd J, Spong J, Myers S, Downey LA. The effect of 90 day administration of a high dose vitamin B-complex on work stress. Hum Psychopharmacol. 2011;26:470–6.

    CAS  PubMed  Google Scholar 

  68. 68.

    White DJ, Cox KH, Peters R, Pipingas A, Scholey AB. Effects of four-week supplementation with a multi-vitamin/mineral preparation on mood and blood biomarkers in young adults: a randomised, double-blind, placebo-controlled trial. Nutrients. 2015;7:9005–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Zhang H, DiBaise JK, Zuccolo A, Kudrna D, Braidotti M, Yu Y, et al. Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci USA. 2009;106:2365–70.

    CAS  Google Scholar 

  70. 70.

    Kasai C, Sugimoto K, Moritani I, Tanaka J, Oya Y, Inoue H, et al. Comparison of the gut microbiota composition between obese and non-obese individuals in a Japanese population, as analyzed by terminal restriction fragment length polymorphism and next-generation sequencing. BMC Gastroenterol. 2015;15:100.

    PubMed  PubMed Central  Google Scholar 

  71. 71.

    Duncan SH, Lobley GE, Holtrop G, Ince J, Johnstone AM, Louis P, et al. Human colonic microbiota associated with diet, obesity and weight loss. Int J Obes (Lond). 2008;32:1720–4.

    CAS  Google Scholar 

  72. 72.

    Hibberd MC, Wu M, Rodionov DA, Li X, Cheng J, Griffin NW, et al. The effects of micronutrient deficiencies on bacterial species from the human gut microbiota. Sci Transl Med. 2017;9. https://doi.org/10.1126/scitranslmed.aal4069.

  73. 73.

    Sonnenburg JL, Backhed F. Diet-microbiota interactions as moderators of human metabolism. Nature. 2016;535:56–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Itani O, Jike M, Watanabe N, Kaneita Y. Short sleep duration and health outcomes: a systematic review, meta-analysis, and meta-regression. Sleep Med. 2017;32:246–56.

    PubMed  Google Scholar 

  75. 75.

    Klingenberg L, Sjodin A, Holmback U, Astrup A, Chaput JP. Short sleep duration and its association with energy metabolism. Obes Rev. 2012;13:565–77.

    CAS  PubMed  Google Scholar 

  76. 76.

    Hogenkamp PS, Nilsson E, Nilsson VC, Chapman CD, Vogel H, Lundberg LS, et al. Acute sleep deprivation increases portion size and affects food choice in young men. Psychoneuroendocrinology. 2013;38:1668–74.

    PubMed  Google Scholar 

  77. 77.

    Dashti HS, Scheer FA, Jacques PF, Lamon-Fava S, Ordovas JM. Short sleep duration and dietary intake: epidemiologic evidence, mechanisms, and health implications. Adv Nutr. 2015;6:648–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Doo M, Kim Y. The consumption of dietary antioxidant vitamins modifies the risk of obesity among Korean men with short sleep duration. Nutrients. 2017;9. https://doi.org/10.3390/nu9070780.

  79. 79.

    Benedict C, Vogel H, Jonas W, Woting A, Blaut M, Schurmann A, et al. Gut microbiota and glucometabolic alterations in response to recurrent partial sleep deprivation in normal-weight young individuals. Mol Metab. 2016;5:1175–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Pereira S, Saboya C, Chaves G, Ramalho A. Class III obesity and its relationship with the nutritional status of vitamin A in pre- and postoperative gastric bypass. Obes Surg. 2009;19:738–44.

    PubMed  Google Scholar 

  81. 81.

    Coupaye M, Puchaux K, Bogard C, Msika S, Jouet P, Clerici C, et al. Nutritional consequences of adjustable gastric banding and gastric bypass: a 1-year prospective study. Obes Surg. 2009;19:56–65.

    PubMed  Google Scholar 

  82. 82.

    Madan AK, Orth WS, Tichansky DS, Ternovits CA. Vitamin and trace mineral levels after laparoscopic gastric bypass. Obes Surg. 2006;16:603–6.

    PubMed  Google Scholar 

  83. 83.

    Peterson LA, Cheskin LJ, Furtado M, Papas K, Schweitzer MA, Magnuson TH, et al. Malnutrition in bariatric surgery candidates: multiple micronutrient deficiencies prior to surgery. Obes Surg. 2016;26:833–8.

    PubMed  Google Scholar 

  84. 84.

    Pereira SE, Saboya CJ, Saunders C, Ramalho A. Serum levels and liver store of retinol and their association with night blindness in individuals with class III obesity. Obes Surg. 2012;22:602–8.

    PubMed  Google Scholar 

  85. 85.

    Kimmons JE, Blanck HM, Tohill BC, Zhang J, Khan LK. Associations between body mass index and the prevalence of low micronutrient levels among US adults. MedGenMed. 2006;8:59.

    PubMed  PubMed Central  Google Scholar 

  86. 86.

    Michaelsson K, Lithell H, Vessby B, Melhus H. Serum retinol levels and the risk of fracture. N Engl J Med. 2003;348:287–94.

    CAS  PubMed  Google Scholar 

  87. 87.

    Zhang X, Zhang R, Moore JB, Wang Y, Yan H, Wu Y et al. The effect of vitamin A on fracture risk: A meta-analysis of cohort studies. Int J Environ Res Public Health. 2017;14. https://doi.org/10.3390/ijerph14091043.

  88. 88.

    Holvik K, Ahmed LA, Forsmo S, Gjesdal CG, Grimnes G, Samuelsen SO, et al. No increase in risk of hip fracture at high serum retinol concentrations in community-dwelling older Norwegians: the Norwegian Epidemiologic Osteoporosis Studies. Am J Clin Nutr. 2015;102:1289–96.

    CAS  PubMed  Google Scholar 

  89. 89.

    Nierenberg DW, Dain BJ, Mott LA, Baron JA, Greenberg ER. Effects of 4 y of oral supplementation with beta-carotene on serum concentrations of retinol, tocopherol, and five carotenoids. Am J Clin Nutr. 1997;66:315–9.

    CAS  PubMed  Google Scholar 

  90. 90.

    Druesne-Pecollo N, Latino-Martel P, Norat T, Barrandon E, Bertrais S, Galan P, et al. Beta-carotene supplementation and cancer risk: a systematic review and metaanalysis of randomized controlled trials. Int J Cancer. 2010;127:172–84.

    CAS  PubMed  Google Scholar 

  91. 91.

    Carrodeguas L, Kaidar-Person O, Szomstein S, Antozzi P, Rosenthal R. Preoperative thiamine deficiency in obese population undergoing laparoscopic bariatric surgery. Surg Obes Relat Dis. 2005;1:517–22. discussion 522

    PubMed  Google Scholar 

  92. 92.

    Flancbaum L, Belsley S, Drake V, Colarusso T, Tayler E. Preoperative nutritional status of patients undergoing Roux-en-Y gastric bypass for morbid obesity. J Gastrointest Surg. 2006;10:1033–7.

    PubMed  Google Scholar 

  93. 93.

    Saito N, Kimura M, Kuchiba A, Itokawa Y. Blood thiamine levels in outpatients with diabetes mellitus. J Nutr Sci Vitaminol (Tokyo). 1987;33:421–30.

    CAS  Google Scholar 

  94. 94.

    Thornalley PJ, Babaei-Jadidi R, Al Ali H, Rabbani N, Antonysunil A, Larkin J, et al. High prevalence of low plasma thiamine concentration in diabetes linked to a marker of vascular disease. Diabetologia. 2007;50:2164–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Jermendy G. Evaluating thiamine deficiency in patients with diabetes. Diab Vasc Dis Res. 2006;3:120–1.

    PubMed  Google Scholar 

  96. 96.

    Ascher E, Gade PV, Hingorani A, Puthukkeril S, Kallakuri S, Scheinman M, et al. Thiamine reverses hyperglycemia-induced dysfunction in cultured endothelial cells. Surgery. 2001;130:851–8.

    CAS  PubMed  Google Scholar 

  97. 97.

    Lukienko PI, Mel’nichenko NG, Zverinskii IV, Zabrodskaya SV. Antioxidant properties of thiamine. Bull Exp Biol Med. 2000;130:874–6.

    CAS  PubMed  Google Scholar 

  98. 98.

    Stirban A, Negrean M, Stratmann B, Gawlowski T, Horstmann T, Gotting C, et al. Benfotiamine prevents macro- and microvascular endothelial dysfunction and oxidative stress following a meal rich in advanced glycation end products in individuals with type 2 diabetes. Diabetes Care. 2006;29:2064–71.

    CAS  PubMed  Google Scholar 

  99. 99.

    Wong CY, Qiuwaxi J, Chen H, Li SW, Chan HT, Tam S, et al. Daily intake of thiamine correlates with the circulating level of endothelial progenitor cells and the endothelial function in patients with type II diabetes. Mol Nutr Food Res. 2008;52:1421–7.

    CAS  PubMed  Google Scholar 

  100. 100.

    Otten JJ, Hellwig JP, Meyers LD. Dietary reference intakes: the essential guide to nutrient requirements. Washington, DC: The National Academies Press; 2006.

    Google Scholar 

  101. 101.

    Grober U, Kisters K, Schmidt J. Neuroenhancement with vitamin B12-underestimated neurological significance. Nutrients. 2013;5:5031–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102.

    Brolin RE, Gorman JH, Gorman RC, Petschenik AJ, Bradley LJ, Kenler HA, et al. Are vitamin B12 and folate deficiency clinically important after roux-en-Y gastric bypass? J Gastrointest Surg. 1998;2:436–42.

    CAS  PubMed  Google Scholar 

  103. 103.

    Kalfarentzos F, Skroubis G, Kehagias I, Mead N, Vagenas K. A prospective comparison of vertical banded gastroplasty and Roux-en-Y gastric bypass in a non-superobese population. Obes Surg. 2006;16:151–8.

    PubMed  Google Scholar 

  104. 104.

    Rhode BM, Tamin H, Gilfix BM, Sampalis JS, Nohr C, MacLean LD. Treatment of vitamin B12 deficiency after gastric surgery for severe obesity. Obes Surg. 1995;5:154–8.

    CAS  PubMed  Google Scholar 

  105. 105.

    Gemmel K, Santry HP, Prachand VN, Alverdy JC. Vitamin D deficiency in preoperative bariatric surgery patients. Surg Obes Relat Dis. 2009;5:54–59.

    PubMed  Google Scholar 

  106. 106.

    Levine M, Rumsey SC, Wang Y, Park JB, Daruwala R. Vitamin C. In: Stipanuk MH, (ed). Biochemical and physiological aspects of human nutrition. Philadelphia, PA: WB Saunders; 2000. p. 541–67.

    Google Scholar 

  107. 107.

    Shim JE, Paik HY, Shin CS, Park KS, Lee HK. Vitamin C nutriture in newly diagnosed diabetes. J Nutr Sci Vitaminol (Tokyo). 2010;56:217–21.

    CAS  Google Scholar 

  108. 108.

    Song Y, Xu Q, Park Y, Hollenbeck A, Schatzkin A, Chen H. Multivitamins, individual vitamin and mineral supplements, and risk of diabetes among older U.S. adults. Diabetes Care. 2011;34:108–14.

    PubMed  Google Scholar 

  109. 109.

    Paolisso G, Balbi V, Volpe C, Varricchio G, Gambardella A, Saccomanno F, et al. Metabolic benefits deriving from chronic vitamin C supplementation in aged non-insulin dependent diabetics. J Am Coll Nutr. 1995;14:387–92.

    CAS  PubMed  Google Scholar 

  110. 110.

    Riess KP, Farnen JP, Lambert PJ, Mathiason MA, Kothari SN. Ascorbic acid deficiency in bariatric surgical population. Surg Obes Relat Dis. 2009;5:81–86.

    PubMed  Google Scholar 

  111. 111.

    Strohmayer E, Via MA, Yanagisawa R. Metabolic management following bariatric surgery. Mt Sinai J Med. 2010;77:431–45.

    PubMed  Google Scholar 

  112. 112.

    Brock KE, Huang WY, Fraser DR, Ke L, Tseng M, Mason RS, et al. Diabetes prevalence is associated with serum 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D in US middle-aged Caucasian men and women: a cross-sectional analysis within the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial. Br J Nutr. 2011;106:339–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Grimnes G, Emaus N, Joakimsen RM, Figenschau Y, Jenssen T, Njolstad I, et al. Baseline serum 25-hydroxyvitamin D concentrations in the Tromsø Study 1994–95 and risk of developing type 2 diabetes mellitus during 11 years of follow-up. Diabet Med. 2010;27:1107–15.

    CAS  PubMed  Google Scholar 

  114. 114.

    Isaia G, Giorgino R, Adami S. High prevalence of hypovitaminosis D in female type 2 diabetic population. Diabetes Care. 2001;24:1496.

    CAS  PubMed  Google Scholar 

  115. 115.

    Scragg R, Holdaway I, Singh V, Metcalf P, Baker J, Dryson E. Serum 25-hydroxyvitamin D3 levels decreased in impaired glucose tolerance and diabetes mellitus. Diabetes Res Clin Pract. 1995;27:181–8.

    CAS  PubMed  Google Scholar 

  116. 116.

    Scragg R, Sowers M, Bell C. Serum 25-hydroxyvitamin D, diabetes, and ethnicity in the Third National Health and Nutrition Examination Survey. Diabetes Care. 2004;27:2813–8.

    CAS  PubMed  Google Scholar 

  117. 117.

    Tahrani AA, Ball A, Shepherd L, Rahim A, Jones AF, Bates A. The prevalence of vitamin D abnormalities in South Asians with type 2 diabetes mellitus in the UK. Int J Clin Pract. 2010;64:351–5.

    CAS  PubMed  Google Scholar 

  118. 118.

    Pittas AG, Lau J, Hu FB, Dawson-Hughes B. The role of vitamin D and calcium in type 2 diabetes. A systematic review and meta-analysis. J Clin Endocrinol Metab. 2007;92:2017–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119.

    Wolden-Kirk H, Overbergh L, Christesen HT, Brusgaard K, Mathieu C. Vitamin D and diabetes: its importance for beta cell and immune function. Mol Cell Endocrinol. 2011;347:106–20.

    CAS  PubMed  Google Scholar 

  120. 120.

    Pittas AG, Dawson-Hughes B, Li T, Van Dam RM, Willett WC, Manson JE, et al. Vitamin D and calcium intake in relation to type 2 diabetes in women. Diabetes Care. 2006;29:650–6.

    CAS  PubMed  Google Scholar 

  121. 121.

    Nagpal J, Pande JN, Bhartia A. A double-blind, randomized, placebo-controlled trial of the short-term effect of vitamin D3 supplementation on insulin sensitivity in apparently healthy, middle-aged, centrally obese men. Diabet Med. 2009;26:19–27.

    CAS  PubMed  Google Scholar 

  122. 122.

    Astrup A. The role of calcium in energy balance and obesity: the search for mechanisms. Am J Clin Nutr. 2008;88:873–4.

    CAS  PubMed  Google Scholar 

  123. 123.

    Major GC, Chaput JP, Ledoux M, St-Pierre S, Anderson GH, Zemel MB, et al. Recent developments in calcium-related obesity research. Obes Rev. 2008;9:428–45.

    CAS  PubMed  Google Scholar 

  124. 124.

    Major GC, Alarie FP, Dore J, Tremblay A. Calcium plus vitamin D supplementation and fat mass loss in female very low-calcium consumers: potential link with a calcium-specific appetite control. Br J Nutr. 2009;101:659–63.

    CAS  PubMed  Google Scholar 

  125. 125.

    Nielsen FH. Magnesium, inflammation, and obesity in chronic disease. Nutr Rev. 2010;68:333–40.

    PubMed  Google Scholar 

  126. 126.

    Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444:860–7.

    CAS  Google Scholar 

  127. 127.

    Rodriguez-Moran M, Guerrero-Romero F. Elevated concentrations of TNF-alpha are related to low serum magnesium levels in obese subjects. Magnes Res. 2004;17:189–96.

    CAS  PubMed  Google Scholar 

  128. 128.

    Lee S, Park HK, Son SP, Lee CW, Kim IJ, Kim HJ. Effects of oral magnesium supplementation on insulin sensitivity and blood pressure in normo-magnesemic nondiabetic overweight Korean adults. Nutr Metab Cardiovasc Dis. 2009;19:781–8.

    CAS  PubMed  Google Scholar 

  129. 129.

    Huerta MG, Roemmich JN, Kington ML, Bovbjerg VE, Weltman AL, Holmes VF, et al. Magnesium deficiency is associated with insulin resistance in obese children. Diabetes Care. 2005;28:1175–81.

    CAS  PubMed  Google Scholar 

  130. 130.

    Pinhas-Hamiel O, Newfield RS, Koren I, Agmon A, Lilos P, Phillip M. Greater prevalence of iron deficiency in overweight and obese children and adolescents. Int J Obes Relat Metab Disord. 2003;27:416–8.

    CAS  PubMed  Google Scholar 

  131. 131.

    Miller JL. Iron deficiency anemia: a common and curable disease. Cold Spring Harb Perspect Med. 2013;3:a011866.

    PubMed  PubMed Central  Google Scholar 

  132. 132.

    Herter-Aeberli I, Thankachan P, Bose B, Kurpad AV. Increased risk of iron deficiency and reduced iron absorption but no difference in zinc, vitamin A or B-vitamin status in obese women in India. Eur J Nutr. 2016;55:2411–21.

    CAS  PubMed  Google Scholar 

  133. 133.

    Vitolo MR, Canal Q, Campagnolo PD, Gama CM. Factors associated with risk of low folate intake among adolescents. J Pediatr (Rio J). 2006;82:121–6.

    Google Scholar 

  134. 134.

    de Luis DA, Pacheco D, Izaola O, Terroba MC, Cuellar L, Martin T. Clinical results and nutritional consequences of biliopancreatic diversion: three years of follow-up. Ann Nutr Metab. 2008;53:234–9.

    PubMed  Google Scholar 

  135. 135.

    Mallory GN, Macgregor AM. Folate status following gastric bypass surgery (the great folate mystery). Obes Surg. 1991;1:69–72.

    CAS  PubMed  Google Scholar 

  136. 136.

    Slater GH, Ren CJ, Siegel N, Williams T, Barr D, Wolfe B, et al. Serum fat-soluble vitamin deficiency and abnormal calcium metabolism after malabsorptive bariatric surgery. J Gastrointest Surg. 2004;8:48–55. discussion 54–5

    PubMed  Google Scholar 

  137. 137.

    Dietary supplements for weight loss: fact sheet for health professionals. National Institutes of Health; Office of Dietary Supplements. https://ods.od.nih.gov/factsheets/WeightLoss-HealthProfessional/. Accessed 25 Oct 2017.

  138. 138.

    Mertz W. Chromium occurrence and function in biological systems. Physiol Rev. 1969;49:163–239.

    CAS  PubMed  Google Scholar 

  139. 139.

    Mertz W. Chromium in human nutrition: a review. J Nutr. 1993;123:626–33.

    CAS  PubMed  Google Scholar 

  140. 140.

    Mertz W, Roginski EE, Schwarz K. Effect of trivalent chromium complexes on glucose uptake by epididymal fat tissue of rats. J Biol Chem. 1961;236:318–22.

    CAS  PubMed  Google Scholar 

  141. 141.

    Tian H, Guo X, Wang X, He Z, Sun R, Ge S et al. Chromium picolinate supplementation for overweight or obese adults. Cochrane Database Syst Rev. 2013;CD010063.

  142. 142.

    Vincent JB. The potential value and toxicity of chromium picolinate as a nutritional supplement, weight loss agent and muscle development agent. Sports Med. 2003;33:213–30.

    PubMed  Google Scholar 

  143. 143.

    Pittler MH, Stevinson C, Ernst E. Chromium picolinate for reducing body weight: meta-analysis of randomized trials. Int J Obes Relat Metab Disord. 2003;27:522–9.

    CAS  PubMed  Google Scholar 

  144. 144.

    Pittler MH, Ernst E. Dietary supplements for body-weight reduction: a systematic review. Am J Clin Nutr. 2004;79:529–36.

    CAS  PubMed  Google Scholar 

  145. 145.

    Anton SD, Morrison CD, Cefalu WT, Martin CK, Coulon S, Geiselman P, et al. Effects of chromium picolinate on food intake and satiety. Diabetes Technol Ther. 2008;10:405–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. 146.

    Coggeshall JC, Heggers JP, Robson MC, Baker H. Biotin status and plasma glucose levels in diabetes. Ann N Y Acad Sci. 1985;447:389–92.

    Google Scholar 

  147. 147.

    Maebashi M, Makino Y, Furukawa Y, Ohinata K, Kimura S, Sato T. Therapeutic evaluation of the effect of biotin on hyperglycemia in patients with non-insulin dependent diabetes mellitus. J Clin Biochem Nutr. 1993;14:211–8.

    Google Scholar 

  148. 148.

    US Preventive Services Task Force. Guide to clinical preventive services: an assessment of the effectiveness of 169 interventions. Baltimore, MD: Williams & Wilkins; 1989.

    Google Scholar 

  149. 149.

    National Academy of Sciences, Institute of Medicine, Food and Nutrition Board. Dietary reference intakes: Recommended dietary allowances and adequate intakes for vitamins and elements. U.S. Department of Agriculture. http://nationalacademies.org/hmd/~/media/files/activity%20files/nutrition/dri-tables/2_%20rd6a%20and%20ai%20values_vitamin%20and%20elements.pdf?la=en&_ga=2.152142075.372731236.1529953007-225861329.1529953007. Accessed 25 Oct 2017.

  150. 150.

    Kushner RF. Barriers to providing nutrition counseling by physicians: a survey of primary care practitioners. Prev Med. 1995;24:546–52.

    CAS  PubMed  Google Scholar 

  151. 151.

    Kolasa KM, Rickett K. Barriers to providing nutrition counseling cited by physicians: a survey of primary care practitioners. Nutr Clin Pract. 2010;25:502–9.

    PubMed  Google Scholar 

  152. 152.

    Peyrin-Biroulet L, Williet N, Cacoub P. Guidelines on the diagnosis and treatment of iron deficiency across indications: a systematic review. Am J Clin Nutr. 2015;102:1585–94.

    CAS  PubMed  Google Scholar 

  153. 153.

    VA/DoD clinical practice guideline for screening and management of overweight and obesity. Department of Veterans Affairs; Department of Defense. Available at http://www.healthquality.va.gov/guidelines/cd/obesity/. Accessed 25 Oct 2017.

  154. 154.

    Wallace TC, McBurney M, Fulgoni VLI. Multivitamin/mineral supplement contribution to micronutrient intakes in the United States, 2007-2010. J Am Coll Nutr. 2014;33:94–102.

    CAS  PubMed  Google Scholar 

  155. 155.

    Fulgoni VLI, Keast DR, Bailey RL, Dwyer J. Foods, fortificants, and supplements: Where do Americans get their nutrients? J Nutr. 2011;141:1847–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. 156.

    Barnes MS, Robson PJ, Bonham MP, Strain JJ, Wallace JM. Effect of vitamin D supplementation on vitamin D status and bone turnover markers in young adults. Eur J Clin Nutr. 2006;60:727–33.

    CAS  PubMed  Google Scholar 

  157. 157.

    McCullough ML, Bostick RM, Daniel CR, Flanders WD, Shaukat A, Davison J, et al. Vitamin D status and impact of vitamin D3 and/or calcium supplementation in a randomized pilot study in the Southeastern United States. J Am Coll Nutr. 2009;28:678–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. 158.

    McKay DL, Perrone G, Rasmussen H, Dallal G, Blumberg JB. Multivitamin/mineral supplementation improves plasma B-vitamin status and homocysteine concentration in healthy older adults consuming a folate-fortified diet. J Nutr. 2000;130:3090–6.

    CAS  PubMed  Google Scholar 

  159. 159.

    Maraini G, Williams SL, Sperduto RD, Ferris FL, Milton RC, Clemons TE, et al. Effects of multivitamin/mineral supplementation on plasma levels of nutrients. Report No. 4 of the Italian-American clinical trial of nutritional supplements and age-related cataract. Ann Ist Super Sanita. 2009;45:119–27.

    CAS  PubMed  Google Scholar 

  160. 160.

    Bailey RL, Fulgoni VL 3rd, Keast DR, Dwyer JT. Dietary supplement use is associated with higher intakes of minerals from food sources. Am J Clin Nutr. 2011;94:1376–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. 161.

    Martiniak Y, Heuer T, Hoffmann I. Intake of dietary folate and folic acid in Germany based on different scenarios for food fortification with folic acid. Eur J Nutr. 2015;54:1045–54.

    CAS  PubMed  Google Scholar 

  162. 162.

    Mudryj AN, de Groh M, Aukema HM, Yu N. Folate intakes from diet and supplements may place certain Canadians at risk for folic acid toxicity. Br J Nutr. 2016;116:1236–45.

    CAS  PubMed  Google Scholar 

  163. 163.

    Willers J, Heinemann M, Bitterlich N, Hahn A. Vitamin intake from food supplements in a German cohort - Is there a risk of excessive intake? Int J Vitam Nutr Res. 2014;84:152–62.

    CAS  PubMed  Google Scholar 

  164. 164.

    Major GC, Doucet E, Jacqmain M, St-Onge M, Bouchard C, Tremblay A. Multivitamin and dietary supplements, body weight and appetite: results from a cross-sectional and a randomised double-blind placebo-controlled study. Br J Nutr. 2008;99:1157–67.

    CAS  PubMed  Google Scholar 

  165. 165.

    Tetens I, Biltoft-Jensen A, Spagner C, Christensen T, Gille MB, Bugel S, et al. Intake of micronutrients among Danish adult users and non-users of dietary supplements. Food Nutr Res. 2011;55. e-pub ahead of print. https://doi.org/10.3402/fnr.v55i0.7153.

  166. 166.

    Kirk SF, Cade JE, Barrett JH, Conner M. Diet and lifestyle characteristics associated with dietary supplement use in women. Public Health Nutr. 1999;2:69–73.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Medical writing support was provided by Virginia A. Schad, PharmD, James C. Street, PhD, and Diane Sloan, PharmD, of Peloton Advantage, LLC, and was funded by Pfizer.

Author contributions

Both A.A and S.B. conceived this article, participated in its drafting and revision and approved it for submission.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Arne Astrup.

Ethics declarations

Conflict of interest

Arne Astrup received an honorarium from Pfizer to review the literature on nutrient deficiencies in obesity and for the development of this manuscript. He has received research grant support from Arla Foods, Danish Dairy Research Foundation, Global Dairy Platform, Danish Agriculture and Food Council and GEIE European Milk Forum. He is an advisor to BioCare Copenhagen, Dutch Beer Institute, Feast Kitchen A/S, Groupe Ethique et Santé, IKEA, McCain Foods Limited, Zaluvida and Weight Watchers. He is a consultant for Basic Research, Beachbody, Gelesis, Danish Agriculture & Food Council, Nestlé Research Center, Novo Nordisk, Pfizer, Saniona, Sanofi Aventis, S-Biotek, Scandinavian Airlines System and Tetra Pak. He receives honoraria as Associate Editor of The American Journal of Clinical Nutrition and for membership of the Editorial Board of Annals of Nutrition and of Metabolism and Annual Review of Nutrition. Susanne Bügel, who did not receive an honorarium from Pfizer in connection with the development of this manuscript, has received research grants from The Software AG Foundation and ERASMUS+. She is a board member of Food, Quality and Health and the Federation of European Nutrition Societies and as such receives travel support for meetings supported by these organizations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Astrup, A., Bügel, S. Overfed but undernourished: recognizing nutritional inadequacies/deficiencies in patients with overweight or obesity. Int J Obes 43, 219–232 (2019). https://doi.org/10.1038/s41366-018-0143-9

Download citation

Further reading

Search