Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Animal models

Role of obesity in the release of extracellular nucleosomes in acute pancreatitis: a clinical and experimental study

Abstract

Background/objectives

A high body mass index increases the risk of severe pancreatitis and associated mortality. Our aims were: (1) To determine whether obesity affects the release of extracellular nucleosomes in patients with pancreatitis; (2) To determine whether pancreatic ascites confers lipotoxicity and triggers the release of extracellular nucleosomes in lean and obese rats.

Methods

DNA and nucleosomes were determined in plasma from patients with mild or moderately severe acute pancreatitis either with normal or high body mass index (BMI). Lipids from pancreatic ascites from lean and obese rats were analyzed and the associated toxicity measured in vitro in RAW 264.7 macrophages. The inflammatory response, extracellular DNA and nucleosomes were determined in lean or obese rats with pancreatitis after peritoneal lavage.

Results

Nucleosome levels in plasma from obese patients with mild pancreatitis were higher than in normal BMI patients; these levels markedly increased in obese patients with moderately severe pancreatitis vs. those with normal BMI. Ascites from obese rats exhibited high levels of palmitic, oleic, stearic, and arachidonic acids. Necrosis and histone 4 citrullination—marker of extracellular traps—increased in macrophages incubated with ascites from obese rats but not with ascites from lean rats. Peritoneal lavage abrogated the increase in DNA and nucleosomes in plasma from lean or obese rats with pancreatitis. It prevented fat necrosis and induction of HIF-related genes in lung.

Conclusions

Extracellular nucleosomes are intensely released in obese patients with acute pancreatitis. Pancreatitis-associated ascitic fluid triggers the release of extracellular nucleosomes in rats with severe pancreatitis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Peery AF, Crockett SD, Barritt AS, Dellon ES, Eluri S, Gangarosa LM, et al. Burden of gastrointestinal, liver, and pancreatic diseases in the United States. Gastroenterology. 2015;149:1731–41.e3.

    Article  Google Scholar 

  2. Wu BU, Banks PA. Clinical management of patients with acute pancreatitis. Gastroenterology. 2013;144:1272–81.

    Article  Google Scholar 

  3. Martínez J, Johnson CD, Sánchez-Payá J, de Madaria E, Robles-Díaz G, Pérez-Mateo M. Obesity is a definitive risk factor of severity and mortality in acute pancreatitis: an updated meta-analysis. Pancreatology. 2006;6:206–9.

    Article  Google Scholar 

  4. Porter KA, Banks PA. Obesity as a predictor of severity in acute pancreatitis. Int J Pancreatol. 1991;10:247–52.

    CAS  PubMed  Google Scholar 

  5. Martínez J, Sánchez-Payá J, Palazón JM, Aparicio JR, Picó A, Pérez-Mateo M. Obesity: a prognostic factor of severity in acute pancreatitis. Pancreas. 1999;19:15–20.

    Article  Google Scholar 

  6. Papachristou GI, Papachristou DJ, Avula H, Slivka A, Whitcomb DC. Obesity increases the severity of acute pancreatitis: performance of APACHE-O score and correlation with the inflammatory response. Pancreatology. 2006;6:279–85.

    Article  Google Scholar 

  7. Sempere L, Martinez J, de Madaria E, Lozano B, Sanchez-Paya J, Jover R, et al. Obesity and fat distribution imply a greater systemic inflammatory response and a worse prognosis in acute pancreatitis. Pancreatol. 2008;8:257–64.

    Article  Google Scholar 

  8. Evans AC, Papachristou GI, Whitcomb DC. Obesity and the risk of severe acute pancreatitis. Minerva Gastroenterol Dietol. 2010;56:169–79.

    CAS  PubMed  Google Scholar 

  9. O’Leary DP, O’Neill D, McLaughlin P, O’Neill S, Myers E, Maher MM, et al. Effects of abdominal fat distribution parameters on severity of acute pancreatitis. World J Surg. 2012;36:1679–85.

    Article  Google Scholar 

  10. Funnell IC, Bornman PC, Weakley SP, Terblanche J, Marks IN. Obesity: an important prognostic factor in acute pancreatitis. Br J Surg. 1993;80:484–6.

    Article  CAS  Google Scholar 

  11. Yashima Y, Isayama H, Tsujino T, Nagano R, Yamamoto K, Mizuno S, et al. A large volume of visceral adipose tissue leads to severe acute pancreatitis. J Gastroenterol. 2011;46:1213–8.

    Article  Google Scholar 

  12. Sadr-Azodi O, Orsini N, Andrén-Sandberg Å, Wolk A. Abdominal and total adiposity and the risk of acute pancreatitis: a population-based prospective cohort study. Am J Gastroenterol. 2013;108:133–9.

    Article  CAS  Google Scholar 

  13. Segersvärd R, Sylván M, Herrington M, Larsson J, Permert J. Obesity increases the severity of acute experimental pancreatitis in the rat. Scand J Gastroenterol. 2001;36:658–63.

    Article  Google Scholar 

  14. Segersvärd R, Tsai JA, Herrington MK, Wang F. Obesity alters cytokine gene expression and promotes liver injury in rats with acute pancreatitis. Obes Silver (Spring MD). 2008;16:23–28.

    Article  Google Scholar 

  15. Lumeng CN, Deyoung SM, Bodzin JL, Saltiel AR. Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity. Diabetes. 2007;56:16–23.

    Article  CAS  Google Scholar 

  16. Perreault M, Marette A. Targeted disruption of inducible nitric oxide synthase protects against obesity-linked insulin resistance in muscle. Nat Med. 2001;7:1138–43.

    Article  CAS  Google Scholar 

  17. Sennello JA, Fayad R, Pini M, Gove ME, Ponemone V, Cabay RJ, et al. Interleukin-18, together with interleukin-12, induces severe acute pancreatitis in obese but not in nonobese leptin-deficient mice. Proc Natl Acad Sci USA. 2008;105:8085–90.

    Article  CAS  Google Scholar 

  18. Araki H, Nishihara T, Matsuda M, Fukuhara A, Kihara S, Funahashi T, et al. Adiponectin plays a protective role in caerulein-induced acute pancreatitis in mice fed a high-fat diet. Gut. 2008;57:1431–40.

    Article  CAS  Google Scholar 

  19. Tang D, Kang R, Coyne CB, Zeh HJ, Lotze MT. PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol Rev. 2012;249:158–75.

    Article  CAS  Google Scholar 

  20. Marichal T, Ohata K, Bedoret D, Mesnil C, Sabatel C, Kobiyama K, et al. DNA released from dying host cells mediates aluminum adjuvant activity. Nat Med. 2011;17:996–1002.

    Article  CAS  Google Scholar 

  21. Chen R, Kang R, Fan X-G, Tang D. Release and activity of histone in diseases. Cell Death Dis. 2014;5:e1370.

    Article  CAS  Google Scholar 

  22. Abrams ST, Zhang N, Manson J, Liu T, Dart C, Baluwa F, et al. Circulating histones are mediators of trauma-associated lung injury. Am J Respir Crit Care Med. 2013;187:160–9.

    Article  CAS  Google Scholar 

  23. Bosmann M, Grailer JJ, Ruemmler R, Russkamp NF, Zetoune FS, Sarma JV, et al. Extracellular histones are essential effectors of C5aR- and C5L2-mediated tissue damage and inflammation in acute lung injury. FASEB J. 2013;27:5010–21.

    Article  CAS  Google Scholar 

  24. Huang H, Chen H-W, Evankovich J, Yan W, Rosborough BR, Nace GW, et al. Histones activate the NLRP3 inflammasome in Kupffer cells during sterile inflammatory liver injury. J Immunol. 2013;191:2665–79.

    Article  CAS  Google Scholar 

  25. Merza M, Hartman H, Rahman M, Hwaiz R, Zhang E, Renström E, et al. Neutrophil extracellular traps induce trypsin activation, inflammation, and tissue damage in mice with severe acute pancreatitis. Gastroenterology. 2015;149:1920–.e8.

    Article  CAS  Google Scholar 

  26. Ou X, Cheng Z, Liu T, Tang Z, Huang W, Szatmary P, et al. Circulating histone levels reflect disease severity in animal models of acute pancreatitis. Pancreas. 2015;44:1089–95.

    Article  CAS  Google Scholar 

  27. Penttilä AK, Rouhiainen A, Kylänpää L, Mustonen H, Puolakkainen P, Rauvala H, et al. Circulating nucleosomes as predictive markers of severe acute pancreatitis. J Intensive Care. 2016;4:14.

    Article  Google Scholar 

  28. Liu T, Huang W, Szatmary P, Abrams ST, Alhamdi Y, Lin Z, et al. Accuracy of circulating histones in predicting persistent organ failure and mortality in patients with acute pancreatitis. Br J Surg. 2017;104:1215–25.

    Article  CAS  Google Scholar 

  29. de-Madaria E, Soler-Sala G, Sánchez-Payá J, Lopez-Font I, Martínez J, Gómez-Escolar L, et al. Influence of fluid therapy on the prognosis of acute pancreatitis: a prospective cohort study. Am J Gastroenterol. 2011;106:1843–50.

    Article  Google Scholar 

  30. Banks PA, Bollen TL, Dervenis C, Gooszen HG, Johnson CD, Sarr MG, et al. Classification of acute pancreatitis--2012: revision of the Atlanta classification and definitions by international consensus. Gut. 2013;62:102–11.

    Article  Google Scholar 

  31. Pereda J, Pérez S, Escobar J, Arduini A, Asensi M, Serviddio G, et al. Obese rats exhibit high levels of fat necrosis and isoprostanes in taurocholate-induced acute pancreatitis. PLoS ONE. 2012;7:e44383.

    Article  CAS  Google Scholar 

  32. Mohanan S, Horibata S, McElwee JL, Dannenberg AJ, Coonrod SA. Identification of macrophage extracellular trap-like structures in mammary gland adipose tissue: a preliminary study. Front Immunol. 2013;4:67.

    Article  Google Scholar 

  33. Lee PC, Howard JM. Fat necrosis. Surg Gynecol Obstet. 1979;148:785–9.

    CAS  PubMed  Google Scholar 

  34. Freeman ML, Werner J, van Santvoort HC, Baron TH, Besselink MG, Windsor JA, et al. Interventions for necrotizing pancreatitis: summary of a multidisciplinary consensus conference. Pancreas. 2012;41:1176–94.

    Article  Google Scholar 

  35. Pérez S, Pereda J, Sabater L, Sastre J. Pancreatic ascites hemoglobin contributes to the systemic response in acute pancreatitis. Free Radic Biol Med. 2015;81:145–55.

    Article  Google Scholar 

  36. Closa D, Sabater L, Fernández-Cruz L, Prats N, Gelpí E, Roselló-Catafau J. Activation of alveolar macrophages in lung injury associated with experimental acute pancreatitis is mediated by the liver. Ann Surg. 1999;229:230–6.

    Article  CAS  Google Scholar 

  37. Domschke S, Malfertheiner P, Uhl W, Büchler M, Domschke W. Free fatty acids in serum of patients with acute necrotizing or edematous pancreatitis. Int J Pancreatol. 1993;13:105–10.

    CAS  PubMed  Google Scholar 

  38. Navina S, Acharya C, DeLany JP, Orlichenko LS, Baty CJ, Shiva SS, et al. Lipotoxicity causes multisystem organ failure and exacerbates acute pancreatitis in obesity. Sci Transl Med. 2011;3:107ra110.

    Article  Google Scholar 

  39. Mössner J, Bödeker H, Kimura W, Meyer F, Böhm S, Fischbach W. Isolated rat pancreatic acini as a model to study the potential role of lipase in the pathogenesis of acinar cell destruction. Int J Pancreatol. 1992;12:285–96.

    PubMed  Google Scholar 

  40. Durgampudi C, Noel P, Patel K, Cline R, Trivedi RN, DeLany JP, et al. Acute lipotoxicity regulates severity of biliary acute pancreatitis without affecting its initiation. Am J Pathol. 2014;184:1773–84.

    Article  CAS  Google Scholar 

  41. Franco-Pons N, Gea-Sorlí S, Closa D. Release of inflammatory mediators by adipose tissue during acute pancreatitis. J Pathol. 2010;221:175–82.

    Article  CAS  Google Scholar 

  42. Franco-Pons N, Casas J, Fabriàs G, Gea-Sorlí S, de-Madaria E, Gelpí E, et al. Fat necrosis generates proinflammatory halogenated lipids during acute pancreatitis. Ann Surg. 2013;257:943–51.

    Article  Google Scholar 

  43. Mateu A, Ramudo L, Manso MA, Closa D, De Dios I. Acinar inflammatory response to lipid derivatives generated in necrotic fat during acute pancreatitis. Biochim Biophys Acta. 2014;1842:1879–86.

    Article  CAS  Google Scholar 

  44. Hoque R, Sohail M, Malik A, Sarwar S, Luo Y, Shah A, et al. TLR9 and the NLRP3 inflammasome link acinar cell death with inflammation in acute pancreatitis. Gastroenterology. 2011;141:358–69.

    Article  CAS  Google Scholar 

  45. Ramudo L, Manso MA, De Dios I. Biliary pancreatitis-associated ascitic fluid activates the production of tumor necrosis factor-alpha in acinar cells. Crit Care Med. 2005;33:143–8. discussion 248

    Article  CAS  Google Scholar 

  46. Satoh A, Shimosegawa T, Masamune A, Fujita M, Koizumi M, Toyota T. Ascitic fluid of experimental severe acute pancreatitis modulates the function of peritoneal macrophages. Pancreas. 1999;19:268–75.

    Article  CAS  Google Scholar 

  47. Gutierrez PT, Folch-Puy E, Bulbena O, Closa D. Oxidised lipids present in ascitic fluid interfere with the regulation of the macrophages during acute pancreatitis, promoting an exacerbation of the inflammatory response. Gut. 2008;57:642–8.

    Article  CAS  Google Scholar 

  48. Fujita M, Masamune A, Satoh A, Sakai Y, Satoh K, Shimosegawa T. Ascites of rat experimental model of severe acute pancreatitis induces lung injury. Pancreas. 2001;22:409–18.

    Article  CAS  Google Scholar 

  49. Niederau C, Crass RA, Silver G, Ferrell LD, Grendell JH. Therapeutic regimens in acute experimental hemorrhagic pancreatitis. Effects of hydration, oxygenation, peritoneal lavage, and a potent protease inhibitor. Gastroenterology. 1988;95:1648–57.

    Article  CAS  Google Scholar 

  50. Platell C, Cooper D, Hall JC. A meta-analysis of peritoneal lavage for acute pancreatitis. J Gastroenterol Hepatol. 2001;16:689–93.

    Article  CAS  Google Scholar 

  51. Liu L, Yan H, Liu W, Cui J, Wang T, Dai R, et al. Abdominal paracentesis drainage does not increase infection in severe acute pancreatitis: A Prospective Study. J Clin Gastroenterol. 2015;49:757–63.

    Article  Google Scholar 

  52. Liu W, Ren L, Chen T, Liu L, Jiang J, Wang T, et al. Abdominal paracentesis drainage ahead of percutaneous catheter drainage benefits patients attacked by acute pancreatitis with fluid collections: a retrospective clinical cohort study. Crit Care Med. 2015;43:109–19.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ms. Landy Menzies for revising the manuscript. This work was supported by Grant SAF2012-39694 and SAF2015-71208-R with FEDER funds from the Spanish Ministry of Economy and Competitiveness to J.S., and by funds from a fellowship of the Group of Pancreas from the Asociación Española de Gastroenterología (AEG); I.F. was recipient of a fellowship from “Programa de Doutorado Sanduíche do Exterior (PDSE)” that belongs to the “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Research in F.H laboratory is funded by DK095359 and ES04699.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Sastre.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez, S., Finamor, I., Martí-Andrés, P. et al. Role of obesity in the release of extracellular nucleosomes in acute pancreatitis: a clinical and experimental study. Int J Obes 43, 158–168 (2019). https://doi.org/10.1038/s41366-018-0073-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-018-0073-6

This article is cited by

Search

Quick links