Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetics and Epigenetics

Multiple genetic variations confer risks for obesity and type 2 diabetes mellitus in arab descendants from UAE

Abstract

Background

The United Arab Emirates (UAE) is one of the countries most threatened with obesity. Here we investigated associations between hundreds of single-nucleotide polymorphisms (SNPs) and the following obesity indicators: body mass index (BMI), waist circumference (WC), and height. We also investigated the associations between obesity-related genes with type 2 diabetes mellitus (T2DM).

Methods

We tested 87, 58, and 586 SNPs in a previous genome-wide significance level for associations with BMI (n = 880), WC (n = 455), and height (n = 897), respectively. For each trait, we used normally transformed Z scores and tested them with SNPs using linear regression models that incorporated age and gender as covariates. The weighted polygenic risk scores for significant SNPs for each trait were tested with the corresponding Z scores using linear regression models with the same covariates. We further tested 145 obesity loci with T2DM (464 cases, 415 controls) using a logistic regression model including age, gender, and BMI Z scores as covariates.

Results

The Mean BMI was 29.39 kg/m2, and mean WC was 103.66 cm. Hypertension and dyslipidemia were common obesity comorbidities (>60%). The best associations for BMI was in FTO, LOC284260 and USP37, and for WC in RFX7 and MYEOV. For height, the best association was in NSD1 followed by MFAP2 and seven other loci. The polygenic scores revealed stronger associations for each trait than individual SNPs; although they could only explain <1% of the traits’ Z scores variations. For T2DM, the strongest associations were with the TCF7L2 and MC4R loci (P < 0.01, OR ~1.70), with novel associations detected with KCNK3 and RARB.

Conclusions

In this first study of Arab descendants, we confirmed several known obesity (FTO, USP37, and RFX7), height (NSD1, MFAP2), and T2DM (TCF7L2, MC4R) associations; and report novel associations, like KCNK3 and RARB for T2DM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Finucane MM, Stevens GA, Cowan MJ, Danaei G, Lin JK, Paciorek CJ, et al. National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9· 1 million participants. Lancet. 2011;377:557–67.

    Article  Google Scholar 

  2. Low S, Chin MC, Deurenberg-Yap M. Review on epidemic of obesity. Ann Acad Med Singap. 2009;38:57–9.

    PubMed  Google Scholar 

  3. Dixon JB. The effect of obesity on health outcomes. Mol Cell Endocrinol. 2010;316:104–8.

    Article  CAS  Google Scholar 

  4. Reddon H, Guéant J-L, Meyre D. The importance of gene–environment interactions in human obesity. Clin Sci. 2016;130:1571–97.

    Article  CAS  Google Scholar 

  5. Malik M, Bakir A. Prevalence of overweight and obesity among children in the United Arab Emirates. Obes Rev. 2007;8:15–20.

    Article  CAS  Google Scholar 

  6. Ramadan E. Sustainable urbanization in the Arabian Gulf region: problems and challenges. Arts Social Sci J. 2015;6:2.

    Google Scholar 

  7. Ng SW, Zaghloul S, Ali H, Harrison G, Popkin BM. The prevalence and trends of overweight, obesity and nutrition‐related non‐communicable diseases in the Arabian Gulf States. Obes Rev. 2011;12:1–13.

    Article  CAS  Google Scholar 

  8. ALNohair S. Obesity in gulf countries. Int J Health Sci. 2014;8:79–83.

    Article  Google Scholar 

  9. Katsaiti M-S, El Anshasy AA. What determines obesity in oil-rich UAE? New evidence from survey data. Appl Econ Lett. 2013;20:1574–9.

    Article  Google Scholar 

  10. Eckel RH, Kahn SE, Ferrannini E, Goldfine AB, Nathan DM, Schwartz MW, et al. Obesity and type 2 diabetes: what can be unified and what needs to be individualized? Diabetes Care. 2011;34:1424–30.

    Article  Google Scholar 

  11. Hossain P, Kawar B, El Nahas M. Obesity and diabetes in the developing world—a growing challenge. N Engl J Med. 2007;2007:213–5.

    Article  Google Scholar 

  12. Bhupathiraju SN, Hu FB. Epidemiology of obesity and diabetes and their cardiovascular complications. Circ Res. 2016;118:1723–35.

    Article  CAS  Google Scholar 

  13. Smith AG, Singleton JR. Obesity and hyperlipidemia are risk factors for early diabetic neuropathy. J Diabetes Complicat. 2013;27:436–42.

    Article  Google Scholar 

  14. Van Leiden HA, Dekker JM, Moll AC, Nijpels G, Heine RJ, Bouter LM, et al. Blood pressure, lipids, and obesity are associated with retinopathy. Diabetes Care. 2002;25:1320–5.

    Article  Google Scholar 

  15. Alsafar H, Jama-Alol KA, Hassoun AA, Tay GK. The prevalence of type 2 diabetes mellitus in the United Arab Emirates: justification for the establishment of the Emirates family registry. Int J Diabetes Dev Ctries. 2012;32:25–32.

    Article  Google Scholar 

  16. Saadi H, Al-Kaabi J, Benbarka M, Khalili A, Almahmeed W, Nagelkerke N, et al. Prevalence of undiagnosed diabetes and quality of care in diabetic patients followed at primary and tertiary clinics in Abu Dhabi, United Arab Emirates. Rev Diabet Stud. 2010;7:293–302.

    Article  Google Scholar 

  17. Jelinek HF, Osman WM, Khandoker AH, Khalaf K, Lee S, Almahmeed W, et al. Clinical profiles, comorbidities and complications of type 2 diabetes mellitus in patients from United Arab Emirates. BMJ Open Diabetes Res Care. 2017;5:e000427.

    Article  Google Scholar 

  18. Dina C, Meyre D, Gallina S, Durand E, Körner A, Jacobson P, et al. Variation in FTO contributes to childhood obesity and severe adult obesity. Nat Genet. 2007;39:724–6.

    Article  CAS  Google Scholar 

  19. Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007;316:889–94.

    Article  CAS  Google Scholar 

  20. Loos RJ, Lindgren CM, Li S, Wheeler E, Zhao JH, Prokopenko I, et al. Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat Genet. 2008;40:768–75.

    Article  CAS  Google Scholar 

  21. Singh RK, Kumar P, Mahalingam K. Molecular genetics of human obesity: a comprehensive review. C R Biol. 2017;340:87–108.

    Article  Google Scholar 

  22. Waalen J. The genetics of human obesity. Transl Res. 2014;164:293–301.

    Article  CAS  Google Scholar 

  23. Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518:197–206.

    Article  CAS  Google Scholar 

  24. Shungin D, Winkler TW, Croteau-Chonka DC, Ferreira T, Locke AE, Mägi R, et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature. 2015;518:187–96.

    Article  CAS  Google Scholar 

  25. Marouli E, Graff M, Medina-Gomez C, Lo KS, Wood AR, Kjaer TR, et al. Rare and low-frequency coding variants alter human adult height. Nature. 2017;542:186–90.

    Article  CAS  Google Scholar 

  26. Wood AR, Esko T, Yang J, Vedantam S, Pers TH, Gustafsson S, et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nat Genet. 2014;46:1173–86.

    Article  CAS  Google Scholar 

  27. Basile KJ, Johnson ME, Xia Q, Grant SF. Genetic susceptibility to type 2 diabetes and obesity: follow-up of findings from genome-wide association studies. Int J Endocrinol. 2014;2014:769671.

    Article  Google Scholar 

  28. McEvoy BP, Visscher PM. Genetics of human height. Econ Hum Biol. 2009;7:294–306.

    Article  Google Scholar 

  29. Mooradian AD. Dyslipidemia in type 2 diabetes mellitus. Nat Clin Pract Endocrinol Metab. 2009;5:150–9.

    CAS  PubMed  Google Scholar 

  30. James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J, et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA. 2014;311:507–20.

    Article  CAS  Google Scholar 

  31. Hung C-F, Breen G, Czamara D, Corre T, Wolf C, Kloiber S, et al. A genetic risk score combining 32 SNPs is associated with body mass index and improves obesity prediction in people with major depressive disorder. BMC Med. 2015;13:86.

    Article  Google Scholar 

  32. Hussain H. Obesity and Overweight among Dubai Population, Prevalence and Associated Risk Factors. Cross Sectional Analytical Study. Int J Epidemiol. 2015;44(Suppl 1):i133–i133.

    Article  Google Scholar 

  33. Teebi AS, Teebi SA. Genetic diversity among the Arabs. Community genetics. 2005;8:21–6.

    Article  Google Scholar 

  34. Zayed H. The Arab genome: Health and wealth. Gene. 2016;592:239–43.

    Article  CAS  Google Scholar 

  35. Aljefree N, Ahmed F. Prevalence of cardiovascular disease and associated risk factors among adult population in the Gulf region: a systematic review. Adv Public Health. 2015;2015:235101.

  36. Thorleifsson G, Walters GB, Gudbjartsson DF, Steinthorsdottir V, Sulem P, Helgadottir A, et al. Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nat Genet. 2009;41:18–24.

    Article  CAS  Google Scholar 

  37. Qi Q, Kilpeläinen TO, Downer MK, Tanaka T, Smith CE, Sluijs I, et al. FTO genetic variants, dietary intake, and body mass index: insights from 177,330 individuals. Hum Mol Genet. 2014;23:ddu411–72.

    Article  Google Scholar 

  38. Wen W, Cho Y-S, Zheng W, Dorajoo R, Kato N, Qi L, et al. Meta-analysis identifies common variants associated with body mass index in east Asians. Nat Genet. 2012;44:307–11.

    Article  CAS  Google Scholar 

  39. Fawcett KA, Barroso I. The genetics of obesity: FTO leads the way. Trends Genet. 2010;26:266–74.

    Article  CAS  Google Scholar 

  40. Cho YS, Go MJ, Kim YJ, Heo JY, Oh JH, Ban H-J, et al. A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat Genet. 2009;41:527–34.

    Article  CAS  Google Scholar 

  41. Willer CJ, Speliotes EK, Loos RJ, Li S, Lindgren CM, Heid IM, et al. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat Genet. 2009;41:25–34.

    Article  CAS  Google Scholar 

  42. Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518:197–206.

    Article  CAS  Google Scholar 

  43. Turnbull C, Ahmed S, Morrison J, Pernet D, Renwick A, Maranian M, et al. Genome-wide association study identifies five new breast cancer susceptibility loci. Nat Genet. 2010;42:504–7.

    Article  CAS  Google Scholar 

  44. Lange EM, Johnson AM, Wang Y, Zuhlke KA, Lu Y, Ribado JV, et al. Genome-wide association scan for variants associated with early-onset prostate cancer. PLoS ONE. 2014;9:e93436.

    Article  Google Scholar 

  45. Takita J, Chen Y, Okubo J, Sanada M, Adachi M, Ohki K, et al. Aberrations of NEGR1 on 1p31 and MYEOV on 11q13 in neuroblastoma. Cancer Sci. 2011;102:1645–50.

    Article  CAS  Google Scholar 

  46. Moreaux J, Hose D, Bonnefond A, Reme T, Robert N, Goldschmidt H. et al. MYEOV is a prognostic factor in multiple myeloma. Exp Hematol. 2010;38:1189–98.

    Article  CAS  Google Scholar 

  47. Douglas J, Hanks S, Temple IK, Davies S, Murray A, Upadhyaya M, et al. NSD1 mutations are the major cause of Sotos syndrome and occur in some cases of Weaver syndrome but are rare in other overgrowth phenotypes. Am J Human Genet. 2003;72:132–43.

    Article  CAS  Google Scholar 

  48. Cecconi M, Forzano F, Milani D, Cavani S, Baldo C, Selicorni A, et al. Mutation analysis of the NSD1 gene in a group of 59 patients with congenital overgrowth. Am J Med Genet A. 2005;134:247–53.

    Article  CAS  Google Scholar 

  49. De Boer L, Van Duyvenvoorde H, Willemstein-Van Hove E, Hoogerbrugge C, Van Doorn J, Maassen J, et al. Mutations in the NSD1 gene in patients with Sotos syndrome associate with endocrine and paracrine alterations in the IGF system. Eur J Endocrinol. 2004;151:333–41.

    Article  Google Scholar 

  50. Qiao Q, Li Y, Chen Z, Wang M, Reinberg D, Xu R-M. The structure of NSD1 reveals an autoregulatory mechanism underlying histone H3K36 methylation. J Biol Chem. 2011;286:8361–8.

    Article  CAS  Google Scholar 

  51. Estrada K, Krawczak M, Schreiber S, van Duijn K, Stolk L, van Meurs JB, et al. A genome-wide association study of northwestern Europeans involves the C-type natriuretic peptide signaling pathway in the etiology of human height variation. Hum Mol Genet. 2009;18:3516–24.

    Article  CAS  Google Scholar 

  52. Gudbjartsson DF, Walters GB, Thorleifsson G, Stefansson H, Halldorsson BV, Zusmanovich P, et al. Many sequence variants affecting diversity of adult human height. Nat Genet. 2008;40:609–15.

    Article  CAS  Google Scholar 

  53. Allen HL, Estrada K, Lettre G, Berndt SI, Weedon MN, Rivadeneira F, et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature. 2010;467:832–8.

    Article  Google Scholar 

  54. Timpson NJ, Lindgren CM, Weedon MN, Randall J, Ouwehand WH, Strachan DP, et al. Adiposity-related heterogeneity in patterns of type 2 diabetes susceptibility observed in genome-wide association data. Diabetes. 2008;58:505–10.

  55. Chambers JC, Elliott P, Zabaneh D, Zhang W, Li Y, Froguel P, et al. Common genetic variation near MC4R is associated with waist circumference and insulin resistance. Nat Genet. 2008;40:716–8.

    Article  CAS  Google Scholar 

  56. Malhotra AK, Correll CU, Chowdhury NI, Müller DJ, Gregersen PK, Lee AT, et al. Association between common variants near the melanocortin 4 receptor gene and severe antipsychotic drug–induced weight gain. Arch Gen Psychiatry. 2012;69:904–12.

    Article  CAS  Google Scholar 

  57. Foster AC, Chen C. Melanocortin-4 receptor antagonists as potential therapeutics in the treatment of cachexia. Curr Top Med Chem. 2007;7:1131–6.

    Article  CAS  Google Scholar 

  58. Ahmad S, Poveda A, Shungin D, Barroso I, Hallmans G, Renström F, et al. Established BMI-associated genetic variants and their prospective associations with BMI and other cardiometabolic traits: the GLACIER Study. Int J Obes. 2016;40:1346–52.

    Article  CAS  Google Scholar 

  59. He M, Cornelis MC, Franks PW, Zhang C, Hu FB, Qi L. Obesity genotype score and cardiovascular risk in women with type 2 diabetes mellitus. Arterioscler Thromb Vasc Biol. 2010;30:327–32.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the contribution of participating individuals whose cooperation made this study possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habiba Alsafar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osman, W., Tay, G.K. & Alsafar, H. Multiple genetic variations confer risks for obesity and type 2 diabetes mellitus in arab descendants from UAE. Int J Obes 42, 1345–1353 (2018). https://doi.org/10.1038/s41366-018-0057-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-018-0057-6

This article is cited by

Search

Quick links