Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Combined exome and whole transcriptome sequencing identifies a de novo intronic SRCAP variant causing DEHMBA syndrome with severe sleep disorder

Abstract

Rare heterozygous variants in exons 33-34 of the SRCAP gene are associated with Floating-Harbor syndrome and have a dominant-negative mechanism of action. At variance, heterozygous null alleles falling in other parts of the same gene cause developmental delay, hypotonia, musculoskeletal defects, and behavioral abnormalities (DEHMBA) syndrome. We report an 18-year-old man with DEHMBA syndrome and obstructive sleep apnea, who underwent exome sequencing (ES) and whole transcriptome sequencing (WTS) on peripheral blood. Trio analysis prioritized the de novo heterozygous c.5658+5 G > A variant. WTS promptly demostrated four different abnormal transcripts affecting >40% of the reads, three of which leading to a frameshift. This study demonstrated the efficacy of a combined ES-WTS approach in solving undiagnosed cases. We also speculated that sleep respiratory disorder may be an underdiagnosed complication of DEHMBA syndrome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

References

  1. Messina G, Prozzillo Y, Delle Monache F, Santopietro MV, Atterrato MT, Dimitri P. The ATPase SRCAP is associated with the mitotic apparatus, uncovering novel molecular aspects of Floating-Harbor syndrome. BMC Biol. 2021;19:184. https://doi.org/10.1186/s12915-021-01109-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nikkel SM, Dauber A, de Munnik S, Connolly M, Hood RL, Caluseriu O, et al. The phenotype of floating-harbor syndrome: clinical characterization of 52 individuals with mutations in exon 34 of SRCAP. Orphanet J Rare Dis. 2013;8:63 https://doi.org/10.1186/1750-1172-8-63.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Messina G, Atterrato MT, Dimitri P. When chromatin organisation floats astray: the Srcap gene and floating-harbor syndrome. J Med Genet. 2016;53:793–7. https://doi.org/10.1136/jmedgenet-2016-103842.

    Article  CAS  PubMed  Google Scholar 

  4. Rots D, Chater-Diehl E, Dingemans AJM, Goodman SJ, Siu MT, Cytrynbaum C, et al. Truncating SRCAP variants outside the floating-harbor syndrome locus cause a distinct neurodevelopmental disorder with a specific DNA methylation signature. Am J Hum Genet. 2021;108:1053–68. https://doi.org/10.1016/j.ajhg.2021.04.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hood RL, Lines MA, Nikkel SM, Schwartzentruber J, Beaulieu C, Nowaczyk MJ, et al. Mutations in SRCAP, encoding SNF2-related CREBBP activator protein, cause Floating-Harbor syndrome. Am J Hum Genet. 2012;90:308–13. https://doi.org/10.1016/j.ajhg.2011.12.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hood RL, Schenkel LC, Nikkel SM, Ainsworth PJ, Pare G, Boycott KM, et al. The defining DNA methylation signature of Floating-Harbor Syndrome. Sci Rep. 2016;6:38803. https://doi.org/10.1038/srep38803.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nogueira E, Garma C, Lobo C, Del Olmo B, Arroyo JM, Gómez I. Severe developmental expressive language disorder due to a frameshift mutation in exon 18 of SRCAP gene, far away from the mutational hotspot in exons 33 and 34 associated to the Floating-Harbor syndrome. Neurol Sci. 2021;42:4349–52. https://doi.org/10.1007/s10072-021-05423-8.

    Article  PubMed  Google Scholar 

  8. Zhao B, Madden JA, Lin J, Berry GT, Wojcik MH, Zhao X, et al. A neurodevelopmental disorder caused by a novel de novo SVA insertion in exon 13 of the SRCAP gene. Eur J Hum Genet. 2022;30:1083–7. https://doi.org/10.1038/s41431-022-01137-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. White-Brown A, Choufani S, Care4Rare Canada Consortium, Weksberg R, Dyment D. Missense variant in SRCAP with distinct DNA methylation signature associated with non-FLHS SRCAP-related neurodevelopmental disorder. Am J Med Genet A. 2023;91:2640–6. https://doi.org/10.1002/ajmg.a.63329.

    Article  CAS  Google Scholar 

  10. Liu X, Wu C, Li C, Boerwinkle E. dbNSFP v3.0: a one-stop database of functional predictions and annotations for human nonsynonymous and splice-site SNVs. Hum Mutat. 2016;37:235–41. https://doi.org/10.1002/humu.22932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wojcik MH, Reuter CM, Marwaha S, Mahmoud M, Duyzend MH, Barseghyan H, et al. Beyond the exome: what’s next in diagnostic testing for Mendelian conditions. Am J Hum Genet. 2023;110:1229–48. https://doi.org/10.1016/j.ajhg.2023.06.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cummings BB, Marshall JL, Tukiainen T, Lek M, Donkervoort S, Foley AR, et al. Improving genetic diagnosis in Mendelian disease with transcriptome sequencing. Sci Transl Med. 2017;9:eaal5209. https://doi.org/10.1126/scitranslmed.aal5209.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kremer LS, Bader DM, Mertes C, Kopajtich R, Pichler G, Iuso A, et al. Genetic diagnosis of Mendelian disorders via RNA sequencing. Nat Commun. 2017;8:15824. https://doi.org/10.1038/ncomms15824.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gonorazky HD, Naumenko S, Ramani AK, Nelakuditi V, Mashouri P, Wang P, et al. Expanding the boundaries of RNA sequencing as a diagnostic tool for rare Mendelian Disease. Am J Hum Genet. 2019;104:1007. https://doi.org/10.1016/j.ajhg.2019.04.004. Erratum for: Am J Hum Genet. 2019;104:466-483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lee H, Huang AY, Wang LK, Yoon AJ, Renteria G, Eskin A, et al. Diagnostic utility of transcriptome sequencing for rare Mendelian diseases. Genet Med. 2020;22:490–9. https://doi.org/10.1038/s41436-019-0672-1.

    Article  CAS  PubMed  Google Scholar 

  16. Murdock DR, Dai H, Burrage LC, Rosenfeld JA, Ketkar S, Müller MF, et al. Transcriptome-directed analysis for Mendelian disease diagnosis overcomes limitations of conventional genomic testing. J Clin Invest. 2021;131:e141500. https://doi.org/10.1172/JCI141500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Monroy MA, Ruhl DD, Xu X, Granner DK, Yaciuk P, Chrivia JC. Regulation of cAMP-responsive element-binding protein-mediated transcription by the SNF2/SWI-related protein, SRCAP. J Biol Chem. 2001;276:40721–6. https://doi.org/10.1074/jbc.M103615200.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the family for their availability in the study. This work was supported by the Ricerca Corrente 2022-2024 and Ricerca Finalizzata (RF_2021_12373524) from the Italian Ministry of Health to MC and DC; Fondazione Telethon Core Grant, Armenise-Harvard Foundation Career Development Award, European Research Council (grant agreement 759154, CellKarma), Italian Ministry of Health (Piano Operativo Salute Traiettoria 3, “Genomed”) to DC. MC, SM, and RPO recruited the clinical case. LM, DC, SM, and MC conceived and designed the work that led to the submission, acquired data, and played an important role in interpreting the results. MPL, LB, and LM analysed the exome-sequencing data. LV and DC analysed the RNA sequencing data. GN, LV, and LM performed the molecular studies. SM, MC, LM, LV wrote the manuscript. All authors agreed to be accountable for all aspects of the work. All authors revised and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Castori.

Ethics declarations

Competing interests

All authors declare that there is no conflict of interest concerning this work. DC is founder, shareholder, and consultant of NEGEDIA (Next Generation Diagnostic srl).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morlino, S., Vaccaro, L., Leone, M.P. et al. Combined exome and whole transcriptome sequencing identifies a de novo intronic SRCAP variant causing DEHMBA syndrome with severe sleep disorder. J Hum Genet (2024). https://doi.org/10.1038/s10038-024-01240-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s10038-024-01240-x

Search

Quick links