Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identifying the genetic associations among the psoriasis patients in eastern India

Abstract

Psoriasis is a multifactorial genetic disorder manifested by hyperproliferation and abnormal differentiation of epidermal keratinocytes, along with the infiltration of inflammatory cells into the skin. Although ~80 genetic susceptibility variants were reported in psoriasis, many loci showed population-specific associations, warranting the need for more population-specific association studies in psoriasis. We determined the association of forty single nucleotide polymorphisms (SNPs) among 2136 psoriasis patients and normal individuals from eastern India. We investigated the expression of corresponding genes and evaluated the protein structure stability for the genes with susceptible coding variants. We found fifteen SNPs significantly associated with psoriasis, while additional three SNPs showed significant association when we classified the patients based on the presence of HLA-Cw6 allele. Epistatic interaction between HLA-Cw6 and other associated loci showed significant association with the SNPs at PSORS1 region, along with other five SNPs outside PSORS1. Three genes showed significant differential expression in psoriatic tissues compared to the adjacent normal skin tissues but were not differential when classified the patients based on their genotypes. SNP rs495337 at SPATA2 (Spermatogenesis Associated 2) showed a 1.2-fold increased risk among the HLA-Cw6 patients compared to combined samples. We found significant downregulation of SPATA2 among the patients with risk genotypes and HLA-Cw6 allele compared to the non-risk genotypes. Protein structure stability analysis showed reduced structural stability for all the mutant residues caused by the associated coding variants. Our study evaluated the genetic associations of psoriasis-susceptible variants in India and evaluated the possible functional significance of these associated variants in psoriasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Matthews D, Fry L, Powles A, Weber J, McCarthy M, Fisher E, et al. Evidence that a locus for familial psoriasis maps to chromosome 4q. Nat Genet. 1996;14:231–3.

    Article  CAS  PubMed  Google Scholar 

  2. Brandrup F. Psoriasis in first-degree relatives of psoriatic twins. Acta Derm Venereol. 1984;64:220–6.

    Article  CAS  PubMed  Google Scholar 

  3. Brandrup F, Holm N, Grunnet N, Henningsen K, Hansen HE. Psoriasis in monozygotic twins: variations in expression in individuals with identical genetic constitution. Acta Derm Venereol. 1982;62:229–36.

    Article  CAS  PubMed  Google Scholar 

  4. Farber EM, Nall ML, Watson W. Natural history of psoriasis in 61 twin pairs. Arch Dermatol. 1974;109:207–11.

    Article  CAS  PubMed  Google Scholar 

  5. Rosbotham JL, Trembath RC, Glover M, Leigh I, Barker JN. An association between psoriasis and hereditary multiple exostoses. A clue for the mapping of a psoriasis susceptibility gene? Br J Dermatol. 1994;130:671–4.

    Article  CAS  PubMed  Google Scholar 

  6. Abele DC, Dobson RL, Graham JB. Heredity and psoriasis. study of a large family. Arch Dermatol. 1963;88:38–47.

    Article  CAS  PubMed  Google Scholar 

  7. Tsoi LC, Spain SL, Ellinghaus E, Stuart PE, Capon F, Knight J, et al. Enhanced meta-analysis and replication studies identify five new psoriasis susceptibility loci. Nat Commun. 2015;6:7001.

    Article  CAS  PubMed  Google Scholar 

  8. Das S, Stuart PE, Ding J, Tejasvi T, Li Y, Tsoi LC, et al. Fine mapping of eight psoriasis susceptibility loci. Eur J Hum Genet. 2015;23:844–53.

    Article  CAS  PubMed  Google Scholar 

  9. Tsoi LC, Spain SL, Knight J, Ellinghaus E, Stuart PE, Capon F, et al. Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity. Nat Genet. 2012;44:1341–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ellinghaus D, Ellinghaus E, Nair RP, Stuart PE, Esko T, Metspalu A, et al. Combined analysis of genome-wide association studies for Crohn disease and psoriasis identifies seven shared susceptibility loci. Am J Hum Genet. 2012;90:636–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stuart PE, Nair RP, Ellinghaus E, Ding J, Tejasvi T, Gudjonsson JE, et al. Genome-wide association analysis identifies three psoriasis susceptibility loci. Nat Genet. 2010;42:1000–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sun LD, Cheng H, Wang ZX, Zhang AP, Wang PG, Xu JH, et al. Association analyses identify six new psoriasis susceptibility loci in the Chinese population. Nat Genet. 2010;42:1005–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nair RP, Henseler T, Jenisch S, Stuart P, Bichakjian CK, Lenk W, et al. Evidence for two psoriasis susceptibility loci (HLA and 17q) and two novel candidate regions (16q and 20p) by genome-wide scan. Hum Mol Genet. 1997;6:1349–56.

    Article  CAS  PubMed  Google Scholar 

  14. Trembath RC, Clough RL, Rosbotham JL, Jones AB, Camp RD, Frodsham A, et al. Identification of a major susceptibility locus on chromosome 6p and evidence for further disease loci revealed by a two stage genome-wide search in psoriasis. Hum Mol Genet. 1997;6:813–20.

    Article  CAS  PubMed  Google Scholar 

  15. Sagoo GS, Tazi-Ahnini R, Barker JW, Elder JT, Nair RP, Samuelsson L, et al. Meta-analysis of genome-wide studies of psoriasis susceptibility reveals linkage to chromosomes 6p21 and 4q28-q31 in Caucasian and Chinese Hans population. J Investig Dermatol. 2004;122:1401–5.

    Article  CAS  PubMed  Google Scholar 

  16. Nair RP, Stuart PE, Nistor I, Hiremagalore R, Chia NVC, Jenisch S, et al. Sequence and haplotype analysis supports HLA-C as the psoriasis susceptibility 1 gene. Am J Hum Genet. 2006;78:827–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fan X, Yang S, Huang W, Wang ZM, Sun LD, Liang YH, et al. Fine mapping of the psoriasis susceptibility locus PSORS1 supports HLA-C as the susceptibility gene in the Han Chinese population. PLoS Genet. 2008;4:e1000038.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chandra A, Lahiri A, Senapati S, Basu B, Ghosh S, Mukhopadhyay I, et al. Increased risk of psoriasis due to combined effect of HLA-Cw6 and LCE3 risk alleles in Indian population. Sci Rep. 2016;6:24059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tang H, Jin X, Li Y, Jiang H, Tang X, Yang X, et al. A large-scale screen for coding variants predisposing to psoriasis. Nat Genet. 2014;46:45–50.

    Article  CAS  PubMed  Google Scholar 

  20. Okada Y, Han B, Tsoi LC, Stuart PE, Ellinghaus E, Tejasvi T, et al. Fine mapping major histocompatibility complex associations in psoriasis and its clinical subtypes. Am J Hum Genet. 2014;95:162–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhou F, Cao H, Zuo X, Zhang T, Zhang X, Liu X, et al. Deep sequencing of the MHC region in the Chinese population contributes to studies of complex disease. Nat Genet. 2016;48:740–6.

    Article  CAS  PubMed  Google Scholar 

  22. Coto-Segura P, Gonzalez-Fernandez D, Batalla A, Gomez J, Gonzalez-Lara L, Queiro R, et al. Common and rare CARD14 gene variants affect the antitumour necrosis factor response among patients with psoriasis. Br J Dermatol. 2016;175:134–41.

    Article  CAS  PubMed  Google Scholar 

  23. Qin P, Zhang Q, Chen M, Fu X, Wang C, Wang Z, et al. Variant analysis of CARD14 in a Chinese Han population with psoriasis vulgaris and generalized pustular psoriasis. J Investig Dermatol. 2014;134:2994–6.

    Article  CAS  PubMed  Google Scholar 

  24. Tsoi LC, Stuart PE, Tian C, Gudjonsson JE, Das S, Zawistowski M, et al. Large scale meta-analysis characterizes genetic architecture for common psoriasis associated variants. Nat Commun. 2017;8:15382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bowes J, Orozco G, Flynn E, Ho P, Brier R, Marzo-Ortega H, et al. Confirmation of TNIP1 and IL23A as susceptibility loci for psoriatic arthritis. Ann Rheum Dis. 2011;70:1641–4.

    Article  PubMed  Google Scholar 

  26. Zuo X, Sun L, Yin X, Gao J, Sheng Y, Xu J, et al. Whole-exome SNP array identifies 15 new susceptibility loci for psoriasis. Nat Commun. 2015;6:6793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sheng Y, Jin X, Xu J, Gao J, Du X, Duan D, et al. Sequencing-based approach identified three new susceptibility loci for psoriasis. Nat Commun. 2014;5:4331.

    Article  CAS  PubMed  Google Scholar 

  28. Genetic Analysis of Psoriasis C, the Wellcome Trust Case Control C, Strange A, Capon F, Spencer CC, Knight J, et al. A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1. Nat Genet. 2010;42:985–90.

    Article  Google Scholar 

  29. Ellinghaus E, Ellinghaus D, Stuart PE, Nair RP, Debrus S, Raelson JV, et al. Genome-wide association study identifies a psoriasis susceptibility locus at TRAF3IP2. Nat Genet. 2010;42:991–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vasilopoulos Y, Walters K, Cork MJ, Duff GW, Sagoo GS, Tazi-Ahnini R. Association analysis of the skin barrier gene cystatin A at the PSORS5 locus in psoriatic patients: evidence for interaction between PSORS1 and PSORS5. Eur J Hum Genet. 2008;16:1002–9.

    Article  CAS  PubMed  Google Scholar 

  31. Chandra A, Senapati S, Ghosh S, Chatterjee G, Chatterjee R. Association of IL12B risk haplotype and lack of interaction with HLA-Cw6 among the psoriasis patients in India. J Hum Genet. 2017;62:389–95.

    Article  CAS  PubMed  Google Scholar 

  32. Das A, Chandra A, Chakraborty J, Chattopadhyay A, Senapati S, Chatterjee G, et al. Associations of ERAP1 coding variants and domain specific interaction with HLA-C *06 in the early onset psoriasis patients of India. Hum Immunol. 2017;78:724–30.

    Article  CAS  PubMed  Google Scholar 

  33. Chandra A, Das S, Mazumder S, Senapati S, Chatterjee G, Chatterjee R. Functional mapping of genetic interactions between HLA-Cw6 and LCE3A in Psoriasis. J Investig Dermatol. 2021;141:2630–8 e7.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang XJ, Huang W, Yang S, Sun LD, Zhang FY, Zhu QX, et al. Psoriasis genome-wide association study identifies susceptibility variants within LCE gene cluster at 1q21. Nat Genet. 2009;41:205–10.

    Article  CAS  PubMed  Google Scholar 

  35. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, et al. AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2022;50:D439–D44.

    Article  CAS  PubMed  Google Scholar 

  37. Capriotti E, Fariselli P, Casadio R. I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res. 2005;33:W306–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rodrigues CHM, Pires DEV, Ascher DB. DynaMut2: assessing changes in stability and flexibility upon single and multiple point missense mutations. Protein Sci. 2021;30:60–9.

    Article  CAS  PubMed  Google Scholar 

  39. Venselaar H, Te Beek TA, Kuipers RK, Hekkelman ML, Vriend G. Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces. BMC Bioinforma. 2010;11:548.

    Article  Google Scholar 

  40. Mi H, Muruganujan A, Thomas PD. PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Res. 2013;41:D377–86.

    Article  CAS  PubMed  Google Scholar 

  41. Thomas PD, Ebert D, Muruganujan A, Mushayahama T, Albou LP, Mi H. PANTHER: making genome-scale phylogenetics accessible to all. Protein Sci. 2022;31:8–22.

    Article  CAS  PubMed  Google Scholar 

  42. Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46:310–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 2019;47:D886–D94.

    Article  CAS  PubMed  Google Scholar 

  44. Shi YY, He L. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 2005;15:97–8.

    Article  CAS  PubMed  Google Scholar 

  45. Li Z, Zhang Z, He Z, Tang W, Li T, Zeng Z, et al. A partition-ligation-combination-subdivision EM algorithm for haplotype inference with multiallelic markers: update of the SHEsis. Cell Res. 2009;19:519–23. http://analysis.bio-x.cn.

    Article  CAS  PubMed  Google Scholar 

  46. Dogra S, Yadav S. Psoriasis in India: prevalence and pattern. Indian J Dermatol Venereol Leprol. 2010;76:595–601.

    Article  PubMed  Google Scholar 

  47. Okada Y, Momozawa Y, Ashikawa K, Kanai M, Matsuda K, Kamatani Y, et al. Construction of a population-specific HLA imputation reference panel and its application to Graves’ disease risk in Japanese. Nat Genet. 2015;47:798–802.

    Article  CAS  PubMed  Google Scholar 

  48. Kisiel B, Kisiel K, Szymanski K, Mackiewicz W, Bialo-Wojcicka E, Uczniak S, et al. The association between 38 previously reported polymorphisms and psoriasis in a Polish population: High predicative accuracy of a genetic risk score combining 16 loci. PLoS One. 2017;12:e0179348.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Stawczyk-Macieja M, Rebala K, Szczerkowska-Dobosz A, Wysocka J, Cybulska L, Kapinska E, et al. Evaluation of Psoriasis genetic risk based on five susceptibility markers in a population from Northern Poland. PLoS One. 2016;11:e0163185.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Chang YT, Hsu CY, Chou CT, Lin MW, Shiao YM, Tsai CY, et al. The genetic polymorphisms of POU5F1 gene are associated with psoriasis vulgaris in Chinese. J Dermatol Sci. 2007;46:153–6.

    Article  CAS  PubMed  Google Scholar 

  51. Huffmeier U, Lascorz J, Traupe H, Bohm B, Schurmeier-Horst F, Stander M, et al. Systematic linkage disequilibrium analysis of SLC12A8 at PSORS5 confirms a role in susceptibility to psoriasis vulgaris. J Investig Dermatol. 2005;125:906–12.

    Article  PubMed  Google Scholar 

  52. Cheng H, Li Y, Zuo XB, Tang HY, Tang XF, Gao JP, et al. Identification of a missense variant in LNPEP that confers psoriasis risk. J Investig Dermatol. 2014;134:359–65.

    Article  CAS  PubMed  Google Scholar 

  53. Dursun HG, Yilmaz HO, Dursun R, Kulaksizoglu S. Association of Cytotoxic T Lymphocyte Antigen-4 Gene polymorphisms with psoriasis vulgaris: a case-control study in Turkish population. J Immunol Res. 2018;2018:1643906.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Nair RP, Duffin KC, Helms C, Ding J, Stuart PE, Goldgar D, et al. Genome-wide scan reveals association of psoriasis with IL-23 and NF-kappaB pathways. Nat Genet. 2009;41:199–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Schlicher L, Wissler M, Preiss F, Brauns-Schubert P, Jakob C, Dumit V, et al. SPATA2 promotes CYLD activity and regulates TNF-induced NF-kappaB signaling and cell death. EMBO Rep. 2016;17:1485–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wei R, Xu LW, Liu J, Li Y, Zhang P, Shan B, et al. SPATA2 regulates the activation of RIPK1 by modulating linear ubiquitination. Genes Dev. 2017;31:1162–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Corbi N, Bruno T, De Angelis R, Di Padova M, Libri V, Di Certo MG, et al. RNA polymerase II subunit 3 is retained in the cytoplasm by its interaction with HCR, the psoriasis vulgaris candidate gene product. J Cell Sci. 2005;118:4253–60.

    Article  CAS  PubMed  Google Scholar 

  58. Jordan CT, Cao L, Roberson ED, Duan S, Helms CA, Nair RP, et al. Rare and common variants in CARD14, encoding an epidermal regulator of NF-kappaB, in psoriasis. Am J Hum Genet. 2012;90:796–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Engineering Research Board, Department of Science & Technology, Government of India (CRG/2020/003837), DBT, Govt. of West Bengal, India (572(sanc)/BT-RD-09/2015), and intramural research funding of the Indian Statistical Institute, India. The authors acknowledge all volunteers who participated in the study. SD was supported by the SERB Senior Research Fellowship under the SERB grant CRG/2020/003837. We thank Taniya Sarkar for her assistance in the genotyping work.

Author information

Authors and Affiliations

Authors

Contributions

RC and SD conceptualized the study, SD, AC and AD conducted the experiments, SS and GC recruited patients, SD analyzed the data and drafted the manuscript, RC, SS, GC, AC and AD edited and finalized the manuscript.

Corresponding author

Correspondence to Raghunath Chatterjee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

The study was approved by the Institutional Ethics Committee for Human Research, Indian Statistical Institute, Kolkata, India and IPGMER/SSKM Hospital Kolkata.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Chandra, A., Das, A. et al. Identifying the genetic associations among the psoriasis patients in eastern India. J Hum Genet 69, 205–213 (2024). https://doi.org/10.1038/s10038-024-01227-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s10038-024-01227-8

Search

Quick links