Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of potential disease-associated variants in idiopathic generalized epilepsy using targeted sequencing

Abstract

Many questions remain regarding the genetics of idiopathic generalized epilepsy (IGE), a subset of genetic generalized epilepsy (GGE). We aimed to identify the candidate coding variants of epilepsy panel genes in a cohort of affected individuals, using variant frequency information from a control cohort of the same region. We performed whole-exome sequencing analysis of 121 individuals and 10 affected relatives, focusing on variants of 950 candidate genes associated with epilepsy according to the Genes4Epilepsy curated panel. We identified 168 candidate variants (CVs) in 137 of 950 candidate genes in 88 of 121 affected individuals with IGE, of which 61 were novel variants. Notably, we identified five CVs in known GGE-associated genes (CHD2, GABRA1, RORB, SCN1A, and SCN1B) in five individuals and CVs shared by affected individuals in each of four family cases for other epilepsy candidate genes. The results of this study demonstrate that IGE is a disease with high heterogeneity and provide IGE-associated CVs whose pathogenicity should be proven by future studies, including advanced functional analysis. The low detection rate of CVs in the GGE-associated genes (4.1%) in this study suggests the current incompleteness of the Genes4Epilepsy panel for the diagnosis of IGE in clinical practice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jallon P, Latour P. Epidemiology of idiopathic generalized epilepsies. Epilepsia. 2005;46:10ā€“4. https://doi.org/10.1111/j.1528-1167.2005.00309.x

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  2. Hirsch E, French J, Scheffer IE, Bogacz A, Alsaadi T, Sperling MR, et al. ILAE definition of the idiopathic generalized epilepsy syndromes: position statement by the ILAE task force on nosology and definitions. Epilepsia 2022;63:1475ā€“99. https://doi.org/10.1111/epi.17236

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  3. Sadleir LG, Vears D, Regan B, Redshaw N, Bleasel A, Scheffer IE. Family studies of individuals with eyelid myoclonia with absences. Epilepsia. 2012;53:2141ā€“8. https://doi.org/10.1111/j.1528-1167.2012.03692.x

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  4. Zhang YH, Burgess R, Malone JP, Glubb GC, Helbig KL, Vadlamudi L, et al. Genetic epilepsy with febrile seizures plus: Refining the spectrum. Neurology. 2017;89:1210ā€“9. https://doi.org/10.1212/WNL.0000000000004384

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  5. Mullen SA, Berkovic SF, ILAE Genetics Commission, Berkovic SF, Lowenstein DH, Kato M, et al. Genetic generalized epilepsies. Epilepsia. 2018;59:1148ā€“53. https://doi.org/10.1111/epi.14042

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  6. Hempelmann A, Taylor KP, Heils A, Lorenz S, Prudā€™Homme JF, Nabbout R, et al. Exploration of the genetic architecture of idiopathic generalized epilepsies. Epilepsia. 2006;47:1682ā€“90. https://doi.org/10.1111/j.1528-1167.2006.00677.x

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  7. Marini C, Scheffer IE, Crossland KM, Grinton BE, Phillips FL, McMahon JM, et al. Genetic architecture of idiopathic generalized epilepsy: clinical genetic analysis of 55 multiplex families. Epilepsia. 2004;45:467ā€“78. https://doi.org/10.1111/j.0013-9580.2004.46803.x

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  8. Delgado-Escueta AV, Koeleman BP, Bailey JN, Medina MT, DurĆ³n RM. The quest for juvenile myoclonic epilepsy genes. Epilepsy Behav. 2013;28:S52ā€“7. https://doi.org/10.1016/j.yebeh.2012.06.033

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  9. Greenberg DA, Durner M, Delgado-Escueta AV. Evidence for multiple gene loci in the expression of the common generalized epilepsies. Neurology 1992;42:56ā€“62.

    CASĀ  PubMedĀ  Google ScholarĀ 

  10. Qaiser F, Yuen RK, Andrade DM. Genetics of epileptic networks: From focal to generalized genetic epilepsies. Curr Neurol Neurosci Rep. 2020;20:46 https://doi.org/10.1007/s11910-020-01059-x

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  11. Epi25 Collaborative. Ultra-rare genetic variation in the epilepsies: a whole-exome sequencing study of 17,606 individuals. Am J Hum Genet. 2019;105:267ā€“82. https://doi.org/10.1016/j.ajhg.2019.05.020

    ArticleĀ  CASĀ  Google ScholarĀ 

  12. Johannesen K, Marini C, Pfeffer S, MĆøller RS, Dorn T, Niturad CE, et al. Phenotypic spectrum of GABRA1: From generalized epilepsies to severe epileptic encephalopathies. Neurology. 2016;87:1140ā€“51. https://doi.org/10.1212/WNL.0000000000003087

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  13. Nicita F, De Liso P, Danti FR, Papetti L, Ursitti F, Castronovo A, et al. The genetics of monogenic idiopathic epilepsies and epileptic encephalopathies. Seizure. 2012;21:3ā€“11. https://doi.org/10.1016/j.seizure.2011.08.007

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  14. Koko M, Motelow JE, Stanley KE, Bobbili DR, Dhindsa RS, May P, et al. Association of ultraā€rare coding variants with genetic generalized epilepsy: A caseā€“control whole exome sequencing study. Epilepsia. 2022;63:723ā€“35. https://doi.org/10.1111/epi.17166

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  15. Stosser MB, Lindy AS, Butler E, Retterer K, Piccirillo-Stosser CM, Richard G, et al. High frequency of mosaic pathogenic variants in genes causing epilepsy-related neurodevelopmental disorders. Genet Med. 2018;20:403ā€“10. https://doi.org/10.1038/gim.2017.114

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  16. International League Against Epilepsy Consortium on Complex Epilepsies. GWAS meta-analysis of over 29,000 people with epilepsy identifies 26 risk loci and subtype-specific genetic architecture. Nat Genet. 2023;55:1471ā€“82. https://doi.org/10.1038/s41588-023-01485-w

  17. International League Against Epilepsy Consortium on Complex Epilepsies. Genome-wide mega-analysis identifies 16 loci and highlights diverse biological mechanisms in the common epilepsies. Nat Commun. 2018;9:5269 https://doi.org/10.1038/s41467-018-07524-z

    ArticleĀ  CASĀ  Google ScholarĀ 

  18. Lee CG, Lee J, Lee M. Multi-gene panel testing in Korean patients with common genetic generalized epilepsy syndromes. PLoS One. 2018;13:e0199321 https://doi.org/10.1371/journal.pone.0199321

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  19. May P, Girard S, Harrer M, Bobbili DR, Schubert J, Wolking S, et al. Rare coding variants in genes encoding GABAA receptors in genetic generalised epilepsies: an exome-based case-control study. Lancet Neurol. 2018;17:699ā€“708. https://doi.org/10.1016/S1474-4422(18)30215-1

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  20. Allen AS, Bellows ST, Berkovic SF, Bridgers J, Burgess R, Cavalleri G, et al. Ultra-rare genetic variation in common epilepsies: a case-control sequencing study. Lancet Neurol. 2017;16:135ā€“43. https://doi.org/10.1016/S1474-4422(16)30359-3

    ArticleĀ  CASĀ  Google ScholarĀ 

  21. Durner M, Pal D, Greenberg D. Genetics of juvenile myoclonic epilepsy: faulty components and faulty wiring? Adv Neurol. 2005;95:245ā€“54.

    PubMedĀ  Google ScholarĀ 

  22. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levyā€Moonshine A, et al. From FastQ data to highā€confidence variant calls: the genome analysis toolkit best practices pipeline. Curr Protoc Bioinforma. 2013;43:11ā€“0. https://doi.org/10.1002/0471250953.bi1110s43

    ArticleĀ  Google ScholarĀ 

  23. Li H Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv preprint arXiv:1303.3997. (2013). https://doi.org/10.48550/arXiv.1303.3997

  24. Okonechnikov K, Conesa A, GarcĆ­a-Alcalde F. Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics. 2016;32:292ā€“4. https://doi.org/10.1093/bioinformatics/btv566

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  25. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4:s13742ā€“015. https://doi.org/10.1186/s13742-015-0047-8

    ArticleĀ  CASĀ  Google ScholarĀ 

  26. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:e164 https://doi.org/10.1093/nar/gkq603

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  27. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405ā€“23 https://doi.org/10.1038/gim.2015.30

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  28. Li Q, Wang K. InterVar: clinical interpretation of genetic variants by the 2015 ACMG-AMP guidelines. Am J Hum Genet. 2017;100:267ā€“80. https://doi.org/10.1016/j.ajhg.2017.01.004

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  29. Barbitoff YA, Khmelkova DN, Pomerantseva EA, Slepchenkov AV, Zubashenko NA, Mironova IV, et al. Expanding the Russian allele frequency reference via cross-laboratory data integration: Insights from 7,452 exome samples. MedRXiv. 2021.11.02.21265801. https://doi.org/10.1101/2021.11.02.21265801

  30. Oliver KL, Scheffer IE, Bennett MF, Grinton BE, Bahlo M, Berkovic SF. Genes4Epilepsy: An epilepsy gene resource. Epilepsia. 2023;64:1368ā€“75. https://doi.org/10.1111/epi.17547

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  31. Pejaver V, Byrne AB, Feng BJ, Pagel KA, Mooney SD, Karchin R, et al. Calibration of computational tools for missense variant pathogenicity classification and ClinGen recommendations for PP3/BP4 criteria. Am J Hum Genet. 2022;109:2163ā€“77. https://doi.org/10.1016/j.ajhg.2022.10.013

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  32. Tian Y, Pesaran T, Chamberlin A, Fenwick RB, Li S, Gau CL, et al. REVEL and BayesDel outperform other in silico meta-predictors for clinical variant classification. Sci Rep. 2019;9:12752 https://doi.org/10.1038/s41598-019-49224-8

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  33. Karlsson M, Zhang C, MĆ©ar L, Zhong W, Digre A, Katona B, et al. A singleā€“cell type transcriptomics map of human tissues. Sci Adv. 2021;7:eabh2169 https://doi.org/10.1126/sciadv.abh2169

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  34. Biesecker LG, Shianna KV, Mullikin JC. Exome sequencing: the expert view. Genome Biol. 2011;12:1ā€“3. https://doi.org/10.1186/gb-2011-12-9-128

    ArticleĀ  Google ScholarĀ 

  35. Tashkandi M, Baarma D, Tricco AC, Boelman C, Alkhater R, Minassian BA. EEG of asymptomatic firstā€degree relatives of patients with juvenile myoclonic, childhood absence and rolandic epilepsy: a systematic review and metaā€analysis. Epileptic Disord. 2019;21:30ā€“41. https://doi.org/10.1684/epd.2019.1024

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  36. Chowdhury FA, Woldman W, FitzGerald TH, Elwes RD, Nashef L, Terry JR, et al. Revealing a brain network endophenotype in families with idiopathic generalised epilepsy. PloS one. 2014;9:e110136 https://doi.org/10.1371/journal.pone.0110136

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  37. Shen W, Pristov JB, Nobili P, Nikolić L. Can glial cells save neurons in epilepsy. Neural Regen Res. 2023;18:1417 https://doi.org/10.4103/1673-5374.360281

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  38. Knowles JK, Xu H, Soane C, Batra A, Saucedo T, Frost E, et al. Maladaptive myelination promotes generalized epilepsy progression. Nat Neurosci. 2022;25:596ā€“606. https://doi.org/10.1038/s41593-022-01052-2

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  39. Tognatta R, Miller RH. Contribution of the oligodendrocyte lineage to CNS repair and neurodegenerative pathologies. Neuropharmacology. 2016;110:539ā€“47. https://doi.org/10.1016/j.neuropharm.2016.04.026

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  40. Larson VA, Mironova Y, Vanderpool KG, Waisman A, Rash JE, Agarwal A, et al. Oligodendrocytes control potassium accumulation in white matter and seizure susceptibility. Elife. 2018;7:e34829 https://doi.org/10.7554/eLife.34829

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  41. Xin W, Mironova YA, Shen H, Marino RA, Waisman A, Lamers WH, et al. Oligodendrocytes support neuronal glutamatergic transmission via expression of glutamine synthetase. Cell Rep. 2019;27:2262ā€“71. https://doi.org/10.1016/j.celrep.2019.04.094

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  42. Patel DC, Tewari BP, Chaunsali L, Sontheimer H. Neuronā€“glia interactions in the pathophysiology of epilepsy. Nat Rev Neurosci. 2019;20:282ā€“97. https://doi.org/10.1038/s41583-019-0126-4

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  43. Timechko EE, Shilkina OS, Oreshkova NV, Kobanenko VO, Osipova EA, Shnayder NA, et al. Whole-exome sequencing of patients with juvenile myoclonic epilepsy. Epilepsy Paroxysmal Cond. 2022;14:254ā€“66. https://doi.org/10.17749/2077-8333/epi.par.con.2022.119

    ArticleĀ  Google ScholarĀ 

Download references

Acknowledgements

We would like to thank all the participants involved in this study. We also thank Dr. Kazuyoshi Hosomichi for his help throughout the study.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: ReG, AT and RiG. Investigation: RiG, ES and ReG. Formal analysis: ReG, TS and TK. Funding acquisition: AT.Ā Writing ā€“ original draft: ReG and AT. Writing ā€“ review and editing: ReG, ES, TS, TK, RiG and AT.

Corresponding authors

Correspondence to Rimma Gamirova or Atsushi Tajima.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

This study was approved by the Local Ethics Committee of Kazan Federal University under the title ā€œGenetics of Epilepsyā€ (10/06/2019) and by the Human Genome/Gene Analysis Research Ethics Committee of Kanazawa University (protocol code:577; 16/06/2020).

Patient consent

Informed consent was obtained from the patients or their legal representatives.

Additional information

Publisherā€™s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gamirova, R., Shagimardanova, E., Sato, T. et al. Identification of potential disease-associated variants in idiopathic generalized epilepsy using targeted sequencing. J Hum Genet 69, 59ā€“67 (2024). https://doi.org/10.1038/s10038-023-01208-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s10038-023-01208-3

Search

Quick links