Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Functional evaluation of BRCA1/2 variants of unknown significance with homologous recombination assay and integrative in silico prediction model

Abstract

Numerous variants of unknown significance (VUSs) exist in hereditary breast and ovarian cancers. Although multiple methods have been developed to assess the significance of BRCA1/2 variants, functional discrepancies among these approaches remain. Therefore, a comprehensive functional evaluation system for these variants should be established. We performed conventional homologous recombination (HR) assays for 50 BRCA1 and 108 BRCA2 VUSs and complementarily predicted VUSs using a statistical logistic regression prediction model that integrated six in silico functional prediction tools. BRCA1/2 VUSs were classified according to the results of the integrative in vitro and in silico analyses. Using HR assays, we identified 10 BRCA1 and 4 BRCA2 VUSs as low-functional pathogenic variants. For in silico prediction, the statistical prediction model showed high accuracy for both BRCA1 and BRCA2 compared with each in silico prediction tool individually and predicted nine BRCA1 and seven BRCA2 variants to be pathogenic. Integrative functional evaluation in this study and the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP) guidelines strongly suggested that seven BRCA1 variants (p.Glu272Gly, p.Lys1095Glu, p.Val1653Leu, p.Thr1681Pro, p.Phe1761Val, p.Thr1773Ile, and p.Gly1803Ser) and four BRCA2 variants (p.Trp31Gly, p.Ser2616Phe, p.Tyr2660Cys, and p.Leu2792Arg) were pathogenic. This study demonstrates that integrative evaluation using conventional HR assays and optimized in silico prediction comprehensively classified the significance of BRCA VUSs for future clinical applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

Data availability

Supplementary information is available on the Journal of Human Genetics’ website.

References

  1. Bono M, Fanale D, Incorvaia L, Cancelliere D, Fiorino A, Calo V, et al. Impact of deleterious variants in other genes beyond BRCA1/2 detected in breast/ovarian and pancreatic cancer patients by NGS-based multi-gene panel testing: looking over the hedge. ESMO Open. 2021;6:100235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Moynahan ME, Jasin M. Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat Rev Mol Cell Biol. 2010;11:196–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S, et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science. 1994;266:66–71.

    Article  CAS  PubMed  Google Scholar 

  4. Wooster R, Bignell G, Lancaster J, Swift S, Seal S, Mangion J, et al. Identification of the breast cancer susceptibility gene BRCA2. Nature. 1995;378:789–92.

    Article  CAS  PubMed  Google Scholar 

  5. Negrini S, Gorgoulis VG, Halazonetis TD. Genomic instability-an evolving hallmark of cancer. Nat Rev Mol Cell Biol. 2010;11:220–8.

    Article  CAS  PubMed  Google Scholar 

  6. Creeden JF, Nanavaty NS, Einloth KR, Gillman CE, Stanbery L, Hamouda DM, et al. Homologous recombination proficiency in ovarian and breast cancer patients. BMC Cancer. 2021;21:1154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zayas-Villanueva OA, Campos-Acevedo LD, Lugo-Trampe JJ, Hernandez-Barajas D, Gonzalez-Guerrero JF, Noriega-Iriondo MF, et al. Analysis of the pathogenic variants of BRCA1 and BRCA2 using next-generation sequencing in women with familial breast cancer: a case-control study. BMC Cancer. 2019;19:722.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Anantha RW, Simhadri S, Foo TK, Miao S, Liu J, Shen Z, et al. Functional and mutational landscapes of BRCA1 for homology-directed repair and therapy resistance. Elife. 2017;6:e21350.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Farrugia DJ, Agarwal MK, Pankratz VS, Deffenbaugh AM, Pruss D, Frye C, et al. Functional assays for classification of BRCA2 variants of uncertain significance. Cancer Res. 2008;68:3523–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ikegami M, Kohsaka S, Ueno T, Momozawa Y, Inoue S, Tamura K, et al. High-throughput functional evaluation of BRCA2 variants of unknown significance. Nat Commun. 2020;11:2573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Truty R, Ouyang K, Rojahn S, Garcia S, Colavin A, Hamlington B, et al. Spectrum of splicing variants in disease genes and the ability of RNA analysis to reduce uncertainty in clinical interpretation. Am J Hum Genet. 2021;108:696–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Iversen ES Jr., Lipton G, Hart SN, Lee KY, Hu C, Polley EC, et al. An integrative model for the comprehensive classification of BRCA1 and BRCA2 variants of uncertain clinical significance. NPJ Genom Med. 2022;7:35.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Guidugli L, Shimelis H, Masica DL, Pankratz VS, Lipton GB, Singh N, et al. Assessment of the clinical relevance of BRCA2 missense variants by functional and computational approaches. Am J Hum Genet. 2018;102:233–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Landrum MJ, Lee JM, Riley GR, Jang W, Rubinstein WS, Church DM, et al. ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 2014;42:D980–5.

    Article  CAS  PubMed  Google Scholar 

  15. Tavtigian SV, Deffenbaugh AM, Yin L, Judkins T, Scholl T, Samollow PB, et al. Comprehensive statistical study of 452 BRCA1 missense substitutions with classification of eight recurrent substitutions as neutral. J Med Genet. 2006;43:295–305.

    Article  CAS  PubMed  Google Scholar 

  16. Shihab HA, Rogers MF, Gough J, Mort M, Cooper DN, Day IN, et al. An integrative approach to predicting the functional effects of non-coding and coding sequence variation. Bioinformatics. 2015;31:1536–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tang H, Thomas PD. PANTHER-PSEP: predicting disease-causing genetic variants using position-specific evolutionary preservation. Bioinformatics. 2016;32:2230–2.

    Article  CAS  PubMed  Google Scholar 

  18. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7:248–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Choi Y, Chan AP. PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics. 2015;31:2745–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ng PC, Henikoff S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003;31:3812–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Akaike H. Information theory and an extension of the maximum likelihood principle. In: Parzen E, Tanabe K, Kitagawa G, editors. Selected Papers of Hirotugu Akaike. Springer Series in Statistics. New York: Springer; 1998. p. 199–213.

  22. Gentleman RIR. R: a language for data analysis and graphics. J Comput Graph Stat. 1996;5:299–314.

    Google Scholar 

  23. Youden WJ. Index for rating diagnostic tests. Cancer. 1950;3:32–5.

    Article  CAS  PubMed  Google Scholar 

  24. Momozawa Y, Iwasaki Y, Parsons MT, Kamatani Y, Takahashi A, Tamura C, et al. Germline pathogenic variants of 11 breast cancer genes in 7,051 Japanese patients and 11,241 controls. Nat Commun. 2018;9:4083.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Eilbeck K, Quinlan A, Yandell M. Settling the score: variant prioritization and Mendelian disease. Nat Rev Genet. 2017;18:599–612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Frazer J, Notin P, Dias M, Gomez A, Min JK, Brock K, et al. Disease variant prediction with deep generative models of evolutionary data. Nature. 2021;599:91–5.

    Article  CAS  PubMed  Google Scholar 

  28. Hall MJ, Reid JE, Burbidge LA, Pruss D, Deffenbaugh AM, Frye C, et al. BRCA1 and BRCA2 mutations in women of different ethnicities undergoing testing for hereditary breast-ovarian cancer. Cancer. 2009;115:2222–33.

    Article  CAS  PubMed  Google Scholar 

  29. Bouwman P, van der Heijden I, van der Gulden H, de Bruijn R, Braspenning ME, Moghadasi S, et al. Functional categorization of BRCA1 variants of uncertain clinical significance in homologous recombination repair complementation assays. Clin Cancer Res. 2020;26:4559–68.

    Article  CAS  PubMed  Google Scholar 

  30. Shimelis H, Mesman RLS, Von Nicolai C, Ehlen A, Guidugli L, Martin C, et al. BRCA2 hypomorphic missense variants confer moderate risks of breast cancer. Cancer Res. 2017;77:2789–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Andreassen PR, Seo J, Wiek C, Hanenberg H. Understanding BRCA2 function as a tumor suppressor based on domain-specific activities in DNA damage responses. Genes (Basel). 2021;12:1034.

    Article  CAS  PubMed  Google Scholar 

  32. Poon KS. In silico analysis of BRCA1 and BRCA2 missense variants and the relevance in molecular genetic testing. Sci Rep. 2021;11:11114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Houdayer C, Caux-Moncoutier V, Krieger S, Barrois M, Bonnet F, Bourdon V, et al. Guidelines for splicing analysis in molecular diagnosis derived from a set of 327 combined in silico/in vitro studies on BRCA1 and BRCA2 variants. Hum Mutat. 2012;33:1228–38.

    Article  CAS  PubMed  Google Scholar 

  34. Thomassen M, Kruse TA, Jensen PK, Gerdes AM. A missense mutation in exon 13 in BRCA2, c.7235G>A, results in skipping of exon 13. Genet Test. 2006;10:116–20.

    Article  CAS  PubMed  Google Scholar 

  35. Fraile-Bethencourt E, Diez-Gomez B, Velasquez-Zapata V, Acedo A, Sanz DJ, Velasco EA. Functional classification of DNA variants by hybrid minigenes: Identification of 30 spliceogenic variants of BRCA2 exons 17 and 18. PLoS Genet. 2017;13:e1006691.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Acedo A, Hernandez-Moro C, Curiel-Garcia A, Diez-Gomez B, Velasco EA. Functional classification of BRCA2 DNA variants by splicing assays in a large minigene with 9 exons. Hum Mutat. 2015;36:210–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Desmet FO, Hamroun D, Lalande M, Collod-Beroud G, Claustres M, Beroud C. Human Splicing Finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res. 2009;37:e67.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yoshino Y, Fang Z, Qi H, Kobayashi A, Chiba N. Dysregulation of the centrosome induced by BRCA1 deficiency contributes to tissue-specific carcinogenesis. Cancer Sci. 2021;112:1679–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mullan PB, Quinn JE, Harkin DP. The role of BRCA1 in transcriptional regulation and cell cycle control. Oncogene. 2006;25:5854–63.

    Article  CAS  PubMed  Google Scholar 

  40. Mondal G, Rowley M, Guidugli L, Wu J, Pankratz VS, Couch FJ. BRCA2 localization to the midbody by filamin A regulates cep55 signaling and completion of cytokinesis. Dev Cell. 2012;23:137–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schlacher K, Christ N, Siaud N, Egashira A, Wu H, Jasin M. Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell. 2011;145:529–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

JOHBOC Registration Committee [Committee]: Tadashi Nomizu (Hoshi General Hospital), Akihiro Sakurai (Sapporo Medical University), Megumi Ohkawa (St. Luke’s International Hospital), Junko Yotsumoto (International University of Health and Welfare), Kumamaru Hiraku (The University of Tokyo), [Secretariat of JOHBOC]: Shiro Yokoyama, Miyuki Shimoda. We would like to thank all the members of the Department of Oncology, Juntendo University for their valuable discussions.

Funding

This work was supported by AMED under Grant Number JP19kk0305012 (YoM), JSPS KAKENHI Grant Number JP19H03497 (YoM), JP19H01806 (MM) and JP20H04333 (SS).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: YoM, MM, SS; Data curation: QG, SJ, KT, WU, AS, YI, HS, ZX, YuM, YoM, M.M., SS; Formal analysis: MM; Funding acquisition: YoM, MM, SS; Investigation: QG, SJ, KT, WU; Methodology: MM, SS; Project administration: YoM, MM, SS; Resources: QG, SJ, KT, WU, HS, ZX, MA, SN; Software: KT, WU, YI, MM; Supervision: YuM, NC, YoM, MM, SS; Validation: QG, SJ, KT, WU; Visualization: MM, SS; Writing-original draft: QG, SS; Writing-review & editing: YuM, YoM, MM, SS.

Corresponding authors

Correspondence to Yoshio Miki, Masaaki Matsuura or Shigeaki Sunada.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics Statement

Approval of the research protocol by an Institutional Reviewer Board: JOHBOC, Tokyo Medical and Dental University, and Teikyo University Ethics Committee approved the study and the use of concealed variant information from clinical databases.—Informed Consent: N/A.—Registry and the Registration No. of the study/trial: N/A.—Animal Studies: N/A.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Q., Ji, S., Takeuchi, K. et al. Functional evaluation of BRCA1/2 variants of unknown significance with homologous recombination assay and integrative in silico prediction model. J Hum Genet 68, 849–857 (2023). https://doi.org/10.1038/s10038-023-01194-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s10038-023-01194-6

Search

Quick links