Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Exploring the molecular and clinical spectrum of COVID-19-related acute necrotizing encephalopathy in three pediatric cases

Abstract

Acute necrotizing encephalopathy (ANE) is a rare disease that predominantly affects children and is associated with a high mortality rate. Here we report three cases of COVID-19-related ANE in children, with the mutation detection in two genes associated with mitochondrial dysfunction. The cases exhibited common ANE symptoms, such as fever, impaired consciousness, positive pathological reflex, increased cerebrospinal fluid protein, and multifocal and symmetric brain lesions identified through MRI. Using genotype-phenotype correlation analysis in trio-whole exome sequencing (WES), four potential pathogenic variants were identified in two genes associated with mitochondrial function (RANBP2 and MCCC2). Notably, MCCC2 was identified as being potentially associated with COVID-19-related ANE for the first time, and two of the four variants had not been previously reported. Our findings expand the clinical and mutation spectrum of COVID-19-related ANE in pediatric cases. The finding of these three new cases in our study further supports the previous hypothesis about the role of mitochondrial homeostatic imbalance in COVID-19-related ANE. It is essential to use genetic testing to identify this subset of patients with compromised mitochondrial function in order to improve patient management and prognosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Messiah SE, Xie L, Mathew MS, Delclos GL, Kohl HW 3rd, Kahn JS. Results of COVID-19 surveillance in a large United States pediatric healthcare system over one year. Child (Basel). 2021;8:752.

    Google Scholar 

  2. Cloete J, Kruger A, Masha M, du Plessis NM, Mawela D, Tshukudu M, et al. Paediatric hospitalisations due to COVID-19 during the first SARS-CoV-2 omicron (B.1.1.529) variant wave in South Africa: a multicentre observational study. Lancet Child Adolesc Health. 2022;6:294–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ross CE, Burns JP, Grossestreuer AV, Bhattarai P, McKiernan CA, Franks JD, et al. Trends in disease severity among critically Ill children with severe acute respiratory syndrome coronavirus 2: a retrospective multicenter cohort study in the United States. Pediatr Crit Care Med. 2023;24:25–33.

    Article  PubMed  Google Scholar 

  4. Chi H, Chang L, Chao YC, Lin DS, Yang HW, Fang LC, et al. Pathogenesis and preventive tactics of immune-mediated non-pulmonary COVID-19 in children and beyond. Int J Mol Sci. 2022;23:14157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ray STJ, Abdel-Mannan O, Sa M, Fuller C, Wood GK, Pysden K, et al. Neurological manifestations of SARS-CoV-2 infection in hospitalised children and adolescents in the UK: a prospective national cohort study. Lancet Child Adolesc Health. 2021;5:631–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Islam MA, Cavestro C, Alam SS, Kundu S, Kamal MA, Reza F. Encephalitis in patients with COVID-19: a systematic evidence-based analysis. Cells. 2022;11:2575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cantuti-Castelvetri L, Ojha R, Pedro LD, Djannatian M, Franz J, Kuivanen S, et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science. 2020;370:856–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pilotto A, Masciocchi S, Volonghi I, De Giuli V, Caprioli F, Mariotto S, et al. Severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) encephalitis is a cytokine release syndrome: evidences from cerebrospinal fluid analyses. Clin Infect Dis. 2021;73:e3019–e26.

    Article  CAS  PubMed  Google Scholar 

  9. Lee MH, Perl DP, Steiner J, Pasternack N, Li W, Maric D, et al. Neurovascular injury with complement activation and inflammation in COVID-19. Brain. 2022;145:2555–68.

    Article  PubMed  Google Scholar 

  10. Mizuguchi M. Acute necrotizing encephalopathy of childhood: a novel form of acute encephalopathy prevalent in Japan and Taiwan. Brain Dev. 1997;19:81–92.

    Article  CAS  PubMed  Google Scholar 

  11. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAM tools. Bioinformatics. 2009;25:2078–9.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kopanos C, Tsiolkas V, Kouris A, Chapple CE, Albarca Aguilera M, Meyer R, et al. VarSome: the human genomic variant search engine. Bioinformatics. 2019;35:1978–80.

    Article  CAS  PubMed  Google Scholar 

  13. Strom SP, Hossain WA, Grigorian M, Li M, Fierro J, Scaringe W, et al. A streamlined approach to prader-willi and angelman syndrome molecular diagnostics. Front Genet. 2021;12:608889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kohler S, Gargano M, Matentzoglu N, Carmody LC, Lewis-Smith D, Vasilevsky NA, et al. The human phenotype ontology in 2021. Nucleic Acids Res. 2021;49:D1207–D17.

    Article  PubMed  Google Scholar 

  15. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of medical genetics and genomics and the association for molecular pathology. Genet Med. 2015;17:405–24.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Capalbo A, Valero RA, Jimenez-Almazan J, Pardo PM, Fabiani M, Jimenez D, et al. Optimizing clinical exome design and parallel gene-testing for recessive genetic conditions in preconception carrier screening: translational research genomic data from 14,125 exomes. PLoS Genet. 2019;15:e1008409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Molina-Ramirez LP, Kyle C, Ellingford JM, Wright R, Taylor A, Bhaskar SS, et al. Personalised virtual gene panels reduce interpretation workload and maintain diagnostic rates of proband-only clinical exome sequencing for rare disorders. J Med Genet. 2022;59:393–98.

    Article  PubMed  Google Scholar 

  18. Neilson DE, Adams MD, Orr CM, Schelling DK, Eiben RM, Kerr DS, et al. Infection-triggered familial or recurrent cases of acute necrotizing encephalopathy caused by mutations in a component of the nuclear pore, RANBP2. Am J Hum Genet. 2009;84:44–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Grunert SC, Stucki M, Morscher RJ, Suormala T, Burer C, Burda P, et al. 3-methylcrotonyl-CoA carboxylase deficiency: clinical, biochemical, enzymatic and molecular studies in 88 individuals. Orphanet J Rare Dis. 2012;7:31.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jiang J, Wang YE, Palazzo AF, Shen Q. Roles of nucleoporin RanBP2/Nup358 in acute necrotizing encephalopathy type 1 (ANE1) and viral infection. Int J Mol Sci. 2022;23:3548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dawlaty MM, Malureanu L, Jeganathan KB, Kao E, Sustmann C, Tahk S, et al. Resolution of sister centromeres requires RanBP2-mediated SUMOylation of topoisomerase IIalpha. Cell. 2008;133:103–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu Y, Chang X, Glessner J, Qu H, Tian L, Li D, et al. Association of rare recurrent copy number variants with congenital heart defects based on next-generation sequencing data from family trios. Front Genet. 2019;10:819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7:248–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pejaver V, Byrne AB, Feng BJ, Pagel KA, Mooney SD, Karchin R, et al. Calibration of computational tools for missense variant pathogenicity classification and ClinGen recommendations for PP3/BP4 criteria. Am J Hum Genet. 2022;109:2163–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zamani R, Pouremamali R, Rezaei N. Central neuroinflammation in Covid-19: a systematic review of 182 cases with encephalitis, acute disseminated encephalomyelitis, and necrotizing encephalopathies. Rev Neurosci. 2022;33:397–412.

    Article  CAS  PubMed  Google Scholar 

  27. Wertheimer GSO, Brandao MB, Reis F. COVID-19-related acute necrotizing encephalopathy with new spectroscopy features. Rev Soc Bras Med Trop. 2022;55:e02752022.

    Article  PubMed  Google Scholar 

  28. Khan M, Bhattarai S, Boyce TG, Hayek RA, Zhadanov SI, Hooper EE, et al. Acute necrotizing encephalopathy associated with coronavirus disease 2019 in an infant. J Pediatr. 2022;247:160–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lazarte-Rantes C, Guevara-Castanon J, Romero L, Guillen-Pinto D. Acute necrotizing encephalopathy associated with SARS-CoV-2 exposure in a pediatric patient. Cureus. 2021;13:e15018.

    PubMed  PubMed Central  Google Scholar 

  30. Forest C, Laudisi M, Malaventura C, Tugnoli V, Pellino G, Marangoni E, et al. Pediatric recurrent acute necrotizing encephalomyelitis, RANBP2 genotype and Sars-CoV-2 infection: diagnosis, pathogenesis and targeted treatments from a case study. Eur J Paediatr Neurol. 2023;42:117–21.

    Article  CAS  PubMed  Google Scholar 

  31. Palazzo AF, Joseph J, Lim M, Thakur KT. Workshop on RanBP2/Nup358 and acute necrotizing encephalopathy. Nucleus. 2022;13:154–69.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Anand G, Visagan R, Chandratre S, Segal S, Nemeth AH, Squier W, et al. H1N1 triggered recurrent acute necrotizing encephalopathy in a family with a T653I mutation in the RANBP2 gene. Pediatr Infect Dis J. 2015;34:318–20.

    Article  PubMed  Google Scholar 

  33. Hartley M, Sinha A, Kumar A, Aliu E, Mainali G, Paudel S. Acute necrotizing encephalopathy: 2 case reports on RANBP2 mutation. Child Neurol Open. 2021;8:2329048X211030751.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sell K, Storch K, Hahn G, Lee-Kirsch MA, Ramantani G, Jackson S, et al. Variable clinical course in acute necrotizing encephalopathy and identification of a novel RANBP2 mutation. Brain Dev. 2016;38:777–80.

    Article  PubMed  Google Scholar 

  35. Stranneheim H, Lagerstedt-Robinson K, Magnusson M, Kvarnung M, Nilsson D, Lesko N, et al. Integration of whole genome sequencing into a healthcare setting: high diagnostic rates across multiple clinical entities in 3219 rare disease patients. Genome Med. 2021;13:40.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Levine JM, Ahsan N, Ho E, Santoro JD. Genetic acute necrotizing encephalopathy associated with RANBP2: clinical and therapeutic implications in pediatrics. Mult Scler Relat Disord. 2020;43:102194.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cecchini R, Cecchini AL. SARS-CoV-2 infection pathogenesis is related to oxidative stress as a response to aggression. Med Hypotheses. 2020;143:110102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Galan F, Nordli DR, Yazdani M, Klein J. A favorable treatment outcome in RANBP2 and influenza associated acute necrotizing encephalitis. Child Neurol Open. 2022;9:2329048X221143689.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gallardo ME, Desviat LR, Rodriguez JM, Esparza-Gordillo J, Perez-Cerda C, Perez B, et al. The molecular basis of 3-methylcrotonylglycinuria, a disorder of leucine catabolism. Am J Hum Genet. 2001;68:334–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Baumgartner MR, Almashanu S, Suormala T, Obie C, Cole RN, Packman S, et al. The molecular basis of human 3-methylcrotonyl-CoA carboxylase deficiency. J Clin Invest. 2001;107:495–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sahin S, Yildirim M, Bektas O, Surucu Kara I, Ceylan AC, Teber S. Intracranial calcification associated with 3-methylcrotonyl-CoA carboxylase deficiency. Mol Syndromol. 2021;12:393–98.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Elesela S, Lukacs NW. Role of mitochondria in viral infections. Life (Basel). 2021;11:232.

    CAS  PubMed  Google Scholar 

  43. Shibata A, Kasai M, Hoshino A, Tanaka T, Mizuguchi M. RANBP2 mutation causing autosomal dominant acute necrotizing encephalopathy attenuates its interaction with COX11. Neurosci Lett. 2021;763:136173.

    Article  CAS  PubMed  Google Scholar 

  44. Al-Anezi A, Sotirova-Koulli V, Shalaby O, Ibrahim A, Abdulmotagalli N, Youssef R, et al. Biotin-thiamine responsive basal ganglia disease in the era of COVID-19 outbreak diagnosis not to be missed: a case report. Brain Dev. 2022;44:303–07.

    Article  CAS  PubMed  Google Scholar 

  45. Thomsen JA, Lund AM, Olesen JH, Mohr M, Rasmussen J. Is L-Carnitine supplementation beneficial in 3-methylcrotonyl-CoA carboxylase deficiency? JIMD Rep. 2015;21:79–88.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to sincerely thank Professor Taosheng Huang for his invaluable advice and guidance in the writing and revision of the manuscript. We would also like to express our gratitude to all those who have provided assistance and support for our article.

Funding

This research was supported by the Natural Science Foundation of Fujian Province (Grant no. 2022J011097).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yinan Zheng or Kaiyu Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, D., Zheng, Y., Li, Y. et al. Exploring the molecular and clinical spectrum of COVID-19-related acute necrotizing encephalopathy in three pediatric cases. J Hum Genet 68, 769–775 (2023). https://doi.org/10.1038/s10038-023-01171-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s10038-023-01171-z

This article is cited by

Search

Quick links