Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Familial multiple discoid fibromas is linked to a locus on chromosome 5 including the FNIP1 gene

Abstract

Previously, we reported a series of families presenting with trichodiscomas, inherited in an autosomal dominant pattern. The phenotype was named familial multiple discoid fibromas (FMDF). The genetic cause of FMDF remained unknown so far. Trichodiscomas are skin lesions previously reported to be part of the same spectrum as the fibrofolliculoma observed in Birt-Hogg-Dubé syndrome (BHD), an inherited disease caused by pathogenic variants in the FLCN gene. Given the clinical and histological differences with BHD and the exclusion of linkage with the FLCN locus, the phenotype was concluded to be distinct from BHD. We performed extensive clinical evaluations and genetic testing in ten families with FMDF. We identified a FNIP1 frameshift variant in nine families and genealogical studies showed common ancestry for eight families. Using whole exome sequencing, we identified six additional rare variants in the haplotype surrounding FNIP1, including a missense variant in the PDGFRB gene that was found to be present in all tested patients with FMDF. Genome-wide linkage analysis showed that the locus on chromosome 5 including FNIP1 was the only region reaching the maximal possible LOD score. We concluded that FMDF is linked to a haplotype on chromosome 5. Additional evaluations in families with FMDF are required to unravel the exact genetic cause underlying the phenotype. When evaluating patients with multiple trichodisomas without a pathogenic variant in the FLCN gene, further genetic testing is warranted and can include analysis of the haplotype on chromosome 5.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Zbar B, Alvord WG, Glenn G, Turner M, Pavlovich CP, Schmidt L, et al. Risk of renal and colonic neoplasms and spontaneous pneumothorax in the Birt-Hogg-Dube syndrome. Cancer Epidemiol Biomark Prev. 2002;11:393–400.

    Google Scholar 

  2. Birt AR, Hogg GR, Dube WJ. Hereditary multiple fibrofolliculomas with trichodiscomas and acrochordons. Arch Dermatol. 1977;113:1674–7.

    Article  CAS  PubMed  Google Scholar 

  3. Toro JR, Glenn G, Duray P, Darling T, Weirich G, Zbar B, et al. Birt-Hogg-Dube syndrome: a novel marker of kidney neoplasia. Arch Dermatol. 1999;135:1195–202.

    Article  CAS  PubMed  Google Scholar 

  4. Nickerson ML, Warren MB, Toro JR, Matrosova V, Glenn G, Turner ML, et al. Mutations in a novel gene lead to kidney tumors, lung wall defects, and benign tumors of the hair follicle in patients with the Birt-Hogg-Dube syndrome. Cancer Cell. 2002;2:157–64.

    Article  CAS  PubMed  Google Scholar 

  5. Schmidt LS, Linehan WM. Molecular genetics and clinical features of Birt-Hogg-Dube syndrome. Nat Rev Urol. 2015;12:558–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vernooij M, Claessens T, Luijten M, van Steensel MA, Coull BJ. Birt-Hogg-Dube syndrome and the skin. Fam Cancer. 2013;12:381–5.

    Article  PubMed  Google Scholar 

  7. Vincent A, Farley M, Chan E, James WD. Birt-Hogg-Dube syndrome: a review of the literature and the differential diagnosis of firm facial papules. J Am Acad Dermatol. 2003;49:698–705.

    Article  PubMed  Google Scholar 

  8. Schulz T, Hartschuh W. Birt-Hogg-Dube syndrome and Hornstein-Knickenberg syndrome are the same. Different sectioning technique as the cause of different histology. J Cutan Pathol. 1999;26:55–61.

    Article  CAS  PubMed  Google Scholar 

  9. Collins GL, Somach S, Morgan MB. Histomorphologic and immunophenotypic analysis of fibrofolliculomas and trichodiscomas in Birt-Hogg-Dube syndrome and sporadic disease. J Cutan Pathol. 2002;29:529–33.

    Article  PubMed  Google Scholar 

  10. Starink TM, Houweling AC, van Doorn MB, Leter EM, Jaspars EH, van Moorselaar RJ, et al. Familial multiple discoid fibromas: a look-alike of Birt-Hogg-Dube syndrome not linked to the FLCN locus. J Am Acad Dermatol. 2012;66:259.e1–9.

    Article  PubMed  Google Scholar 

  11. Tong Y, Coda AB, Schneider JA, Hata TR, Cohen PR. Familial Multiple Trichodiscomas: Case Report and Concise Review. Cureus. 2017;9:e1596.

    PubMed  PubMed Central  Google Scholar 

  12. Camarasa JG, Calderon P, Moreno A. Familial multiple trichodiscomas. Acta Derm Venereol. 1988;68:163–5.

    CAS  PubMed  Google Scholar 

  13. Balus L, Crovato F, Breathnach AS. Familial multiple trichodiscomas. J Am Acad Dermatol. 1986;15:603–7.

    Article  CAS  PubMed  Google Scholar 

  14. Wee JS, Chong H, Natkunarajah J, Mortimer PS, Moosa Y. Familial multiple discoid fibromas: unique histological features and therapeutic response to topical rapamycin. Br J Dermatol. 2013;169:177–80.

    Article  CAS  PubMed  Google Scholar 

  15. Neri I, D’Acunto C, Pileri A, Patrizi A. Multiple familial trichodiscomas. Cutis. 2014;93:E6–7.

    PubMed  Google Scholar 

  16. Baba M, Hong SB, Sharma N, Warren MB, Nickerson ML, Iwamatsu A, et al. Folliculin encoded by the BHD gene interacts with a binding protein, FNIP1, and AMPK, and is involved in AMPK and mTOR signaling. Proc Natl Acad Sci. 2006;103:15552–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Takagi Y, Kobayashi T, Shiono M, Wang L, Piao X, Sun G, et al. Interaction of folliculin (Birt-Hogg-Dube gene product) with a novel Fnip1-like (FnipL/Fnip2) protein. Oncogene. 2008;27:5339–47.

    Article  CAS  PubMed  Google Scholar 

  18. Hasumi H, Baba M, Hong SB, Hasumi Y, Huang Y, Yao M, et al. Identification and characterization of a novel folliculin-interacting protein FNIP2. Gene. 2008;415:60–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lim TH, Fujikane R, Sano S, Sakagami R, Nakatsu Y, Tsuzuki T, et al. Activation of AMP-activated protein kinase by MAPO1 and FLCN induces apoptosis triggered by alkylated base mismatch in DNA. DNA Repair. 2012;11:259–66.

    Article  CAS  PubMed  Google Scholar 

  20. Viollet B. The Energy Sensor AMPK: Adaptations to Exercise, Nutritional and Hormonal Signals. In: Spiegelman B, editor. Hormones, Metabolism and the Benefits of Exercise. Cham: Springer; 2017; p. 13–24.

  21. Bolster DR, Crozier SJ, Kimball SR, Jefferson LS. AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling. J Biol Chem. 2002;277:23977–80.

    Article  CAS  PubMed  Google Scholar 

  22. Reyes NL, Banks GB, Tsang M, Margineantu D, Gu H, Djukovic D, et al. Fnip1 regulates skeletal muscle fiber type specification, fatigue resistance, and susceptibility to muscular dystrophy. Proc Natl Acad Sci. 2015;112:424–9.

    Article  CAS  PubMed  Google Scholar 

  23. Park H, Staehling K, Tsang M, Appleby MW, Brunkow ME, Margineantu D, et al. Disruption of Fnip1 reveals a metabolic checkpoint controlling B lymphocyte development. Immunity. 2012;36:769–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Siggs OM, Stockenhuber A, Deobagkar-Lele M, Bull KR, Crockford TL, Kingston BL, et al. Mutation of Fnip1 is associated with B-cell deficiency, cardiomyopathy, and elevated AMPK activity. Proc Natl Acad Sci. 2016;113:E3706–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xiao L, Liu J, Sun Z, Yin Y, Mao Y, Xu D, et al. AMPK-dependent and -independent coordination of mitochondrial function and muscle fiber type by FNIP1. PLoS Genet. 2021;17:e1009488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Woodford MR, Dunn DM, Blanden AR, Capriotti D, Loiselle D, Prodromou C, et al. The FNIP co-chaperones decelerate the Hsp90 chaperone cycle and enhance drug binding. Nat Commun. 2016;7:12037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schmidt LS, Linehan WM. FLCN: The causative gene for Birt-Hogg-Dube syndrome. Gene. 2018;640:28–42.

    Article  CAS  PubMed  Google Scholar 

  28. Niehues T, Ozgur TT, Bickes M, Waldmann R, Schoning J, Brasen J, et al. Mutations of the gene FNIP1 associated with a syndromic autosomal recessive immunodeficiency with cardiomyopathy and pre-excitation syndrome. Eur J Immunol. 2020;50:1078–80.

    Article  CAS  PubMed  Google Scholar 

  29. Saettini F, Poli C, Vengoechea J, Bonanomi S, Orellana JC, Fazio G, et al. Absent B cells, agammaglobulinemia, and hypertrophic cardiomyopathy in Folliculin Interacting Protein 1 deficiency. Blood. 2021;137:494–9.

  30. Tong L, Thompson E. Multilocus lod scores in large pedigrees: combination of exact and approximate calculations. Hum Hered. 2008;65:142–53.

    Article  PubMed  Google Scholar 

  31. Silberstein M, Weissbrod O, Otten L, Tzemach A, Anisenia A, Shtark O, et al. A system for exact and approximate genetic linkage analysis of SNP data in large pedigrees. Bioinformatics 2013;29:197–205.

    Article  CAS  PubMed  Google Scholar 

  32. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020;581:434–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Houweling AC, Gijezen LM, Jonker MA, van Doorn MB, Oldenburg RA, van Spaendonck-Zwarts KY, et al. Renal cancer and pneumothorax risk in Birt-Hogg-Dube syndrome; an analysis of 115 FLCN mutation carriers from 35 BHD families. Br J Cancer. 2011;105:1912–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Furuya M, Hasumi H, Yao M, Nagashima Y. Birt-Hogg-Dube syndrome-associated renal cell carcinoma: Histopathological features and diagnostic conundrum. Cancer Sci. 2020;111:15–22.

    Article  CAS  PubMed  Google Scholar 

  35. Gazzo AM, Daneels D, Cilia E, Bonduelle M, Abramowicz M, Van Dooren S, et al. DIDA: A curated and annotated digenic diseases database. Nucl Acids Res. 2016;44:D900–7.

    Article  CAS  PubMed  Google Scholar 

  36. Goudie D. Multiple Self-Healing Squamous Epithelioma (MSSE): A Digenic Trait Associated with Loss of Function Mutations in TGFBR1 and Variants at a Second Linked Locus on the Long Arm of Chromosome 9. Genes (Basel). 2020;11:1410.

  37. Nicolas G, Pottier C, Maltete D, Coutant S, Rovelet-Lecrux A, Legallic S, et al. Mutation of the PDGFRB gene as a cause of idiopathic basal ganglia calcification. Neurology 2013;80:181–7.

    Article  CAS  PubMed  Google Scholar 

  38. Mathorne SW, Sorensen K, Fagerberg C, Bode M, Hertz JM. A novel PDGFRB sequence variant in a family with a mild form of primary familial brain calcification: a case report and a review of the literature. BMC Neurol. 2019;19:60.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lokker NA, O’Hare JP, Barsoumian A, Tomlinson JE, Ramakrishnan V, Fretto LJ, et al. Functional importance of platelet-derived growth factor (PDGF) receptor extracellular immunoglobulin-like domains. Identification of PDGF binding site and neutralizing monoclonal antibodies. J Biol Chem. 1997;272:33037–44.

    Article  CAS  PubMed  Google Scholar 

  40. Omura T, Heldin CH, Ostman A. Immunoglobulin-like domain 4-mediated receptor-receptor interactions contribute to platelet-derived growth factor-induced receptor dimerization. J Biol Chem. 1997;272:12676–82.

    Article  CAS  PubMed  Google Scholar 

  41. Shulman T, Sauer FG, Jackman RM, Chang CN, Landolfi NF. An antibody reactive with domain 4 of the platelet-derived growth factor beta receptor allows BB binding while inhibiting proliferation by impairing receptor dimerization. J Biol Chem. 1997;272:17400–4.

    Article  CAS  PubMed  Google Scholar 

  42. Johnston JJ, Sanchez-Contreras MY, Keppler-Noreuil KM, Sapp J, Crenshaw M, Finch NA, et al. A Point Mutation in PDGFRB Causes Autosomal-Dominant Penttinen Syndrome. Am J Hum Genet. 2015;97:465–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cheung YH, Gayden T, Campeau PM, LeDuc CA, Russo D, Nguyen VH, et al. A recurrent PDGFRB mutation causes familial infantile myofibromatosis. Am J Hum Genet. 2013;92:996–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Takenouchi T, Yamaguchi Y, Tanikawa A, Kosaki R, Okano H, Kosaki K. Novel overgrowth syndrome phenotype due to recurrent de novo PDGFRB mutation. J Pediatr. 2015;166:483–6.

    Article  PubMed  Google Scholar 

  45. Wenger TL, Bly RA, Wu N, Albert CM, Park J, Shieh J, et al. Activating variants in PDGFRB result in a spectrum of disorders responsive to imatinib monotherapy. Am J Med Genet A. 2020;182:1576–91.

    Article  CAS  PubMed  Google Scholar 

  46. Darby IA, Laverdet B, Bonte F, Desmouliere A. Fibroblasts and myofibroblasts in wound healing. Clin Cosmet Investig Dermatol. 2014;7:301–11.

    PubMed  PubMed Central  Google Scholar 

  47. Onoufriadis A, Boulouadnine B, Dachy G, Higashino T, Huang HY, Hsu CK, et al. A germline mutation in the platelet-derived growth factor receptor beta gene may be implicated in hereditary progressive mucinous histiocytosis. Br J Dermatol. 2021;184:967–70.

    Article  CAS  PubMed  Google Scholar 

  48. Mathieu J, Detraux D, Kuppers D, Wang Y, Cavanaugh C, Sidhu S, et al. Folliculin regulates mTORC1/2 and WNT pathways in early human pluripotency. Nat Commun. 2019;10:632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kennedy JC, Khabibullin D, Hougard T, Nijmeh J, Shi W, Henske EP. Loss of FLCN inhibits canonical WNT signaling via TFE3. Hum Mol Genet. 2019;28:3270–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nagashima K, Fukushima H, Shimizu K, Yamada A, Hidaka M, Hasumi H, et al. Nutrient-induced FNIP degradation by SCFbeta-TRCP regulates FLCN complex localization and promotes renal cancer progression. Oncotarget 2017;8:9947–60.

    Article  PubMed  Google Scholar 

  51. Pacitto A, Ascher DB, Wong LH, Blaszczyk BK, Nookala RK, Zhang N, et al. Lst4, the yeast Fnip1/2 orthologue, is a DENN-family protein. Open Biol. 2015;5:150174.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Glykofridis IE, Knol JC, Balk JA, Westland D, Pham TV, Piersma SR, et al. Loss of FLCN-FNIP1/2 induces a non-canonical interferon response in human renal tubular epithelial cells. Elife. 2021;10:e61630.

Download references

Acknowledgements

We thank Francesco Saettini for his effort to re-assess the parents of a patient with FNIP1 deficiency for skin lesions.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed sufficiently to the intellectual content of the submission. Conceived and/or designed the work that led to the submission, acquired data, and/or played an important role in interpreting the results: IvdB, IEG, MWTT, MNHL, TMS, JAB, PCJ, EH, MJBH, QDG, JJPG, AMP, PEP, MAMS, AVP, RMFW, FHM, ACH, and QW. Drafted or revised the manuscript: IvdB, IEG, MNHL, RMFW, ACH, and QW. Approved the final version: IvdB, IEG, MWTT, MNHL, TMS, JAB, PCJ, EH, MJBH, QDG, JJPG, AMP, PEP, MAMS, AVP, RMFW, FHM, ACH, and QW.

Corresponding author

Correspondence to Irma van de Beek.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van de Beek, I., Glykofridis, I.E., Tanck, M.W.T. et al. Familial multiple discoid fibromas is linked to a locus on chromosome 5 including the FNIP1 gene. J Hum Genet 68, 273–279 (2023). https://doi.org/10.1038/s10038-022-01113-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s10038-022-01113-1

This article is cited by

Search

Quick links