Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Association of rare PPARGC1A variants with Parkinson’s disease risk

Abstract

Background

Recent researches on Parkinson’s disease (PD) pathogenesis discovered the correlation between PD and peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) dysfunction and reduction of PPARGC1A gene expression. Hence, we detected PPARGC1A rare variants to clarify their effect on PD risk in a large population of PD patients in mainland China.

Methods

We applied whole-exome sequencing (WES) to 1917 patients with early-onset or familial PD and 1652 controls (WES cohort), and whole-genome sequencing (WGS) to 1962 patients with sporadic late-onset PD and 1279 controls (WGS cohort). To identify PPARGC1A rare variants, we used burden analysis to assess the relationship between PPARGC1A rare variants and PD susceptibility.

Results

30 rare missense variants in the cohort WES and 21 missense variants in the cohort WGS have been detected in the study and PPARGC1A missense variants are significantly associated with early-onset and familial PD susceptibility in our study (P = 0.012), which supports evidence that PPARGC1A rare variants are involved in the onset of early-onset and familial PD.

Conclusions

The study suggested that PPARGC1A rare variants may contribute to the risk of early-onset and familial PD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Schapira AHV, Chaudhuri KR, Jenner P. Non-motor features of Parkinson disease. Nat Rev Neurosci. 2017;18:435–50.

    Article  PubMed  CAS  Google Scholar 

  2. Piccinin E, Sardanelli AM, Seibel P, Moschetta A, Cocco T, Villani G. PGC-1s in the spotlight with Parkinson’s disease. Int J Mol Sci. 2021;22:3487.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Jankovic J, Tan EK. Parkinson’s disease: etiopathogenesis and treatment. J Neurol Neurosurg Psychiatry. 2020;91:795–808.

    Article  PubMed  Google Scholar 

  4. Homayoun H. Parkinson disease. Ann Intern Med. 2018;169:Itc33-itc48.

  5. Blauwendraat C, Nalls MA, Singleton AB. The genetic architecture of Parkinson’s disease. Lancet Neurol. 2020;19:170–8.

    Article  PubMed  CAS  Google Scholar 

  6. Tolosa E, Garrido A, Scholz SW, Poewe W. Challenges in the diagnosis of Parkinson’s disease. Lancet Neurol. 2021;20:385–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Kalia LV, Lang AE. Parkinson’s disease. Lancet. 2015;386:896–912.

    Article  PubMed  CAS  Google Scholar 

  8. Martínez-Redondo V, Pettersson AT, Ruas JL. The hitchhiker’s guide to PGC-1α isoform structure and biological functions. Diabetologia. 2015;58:1969–77.

    Article  PubMed  Google Scholar 

  9. Vernier M, Giguère V. Aging, senescence and mitochondria: the PGC-1/ERR axis. J Mol Endocrinol. 2021;66:R1–14.

    Article  PubMed  CAS  Google Scholar 

  10. Nitz I, Ewert A, Klapper M, Döring F. Analysis of PGC-1α variants Gly482Ser and Thr612Met concerning their PPARγ2-coactivation function. Biochem Biophys Res Commun. 2007;353:481–6.

    Article  PubMed  CAS  Google Scholar 

  11. Jiang H, Kang S-U, Zhang S, Karuppagounder S, Xu J, Lee Y-K, et al. Adult conditional knockout of PGC-1α leads to loss of dopamine neurons. eNeuro. 2016;3:ENEURO.0183-16.2016.

  12. Ciron C, Lengacher S, Dusonchet J, Aebischer P, Schneider BL. Sustained expression of PGC-1α in the rat nigrostriatal system selectively impairs dopaminergic function. Hum Mol Genet. 2012;21:1861–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Peng K, Yang L, Wang J, Ye F, Dan G, Zhao Y, et al. The interaction of mitochondrial biogenesis and fission/fusion mediated by PGC-1α regulates rotenone-induced dopaminergic neurotoxicity. Mol Neurobiol. 2017;54:3783–97.

    Article  PubMed  CAS  Google Scholar 

  14. Martínez-Redondo V, Jannig PR, Correia JC, Ferreira DMS, Cervenka I, Lindvall JM, et al. Peroxisome proliferator-activated receptor γ coactivator-1 α isoforms selectively regulate multiple splicing events on target genes. J Biol Chem. 2016;291:15169–84.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Eschbach J, von Einem B, Müller K, Bayer H, Scheffold A, Morrison BE, et al. Mutual exacerbation of peroxisome proliferator-activated receptor γ coactivator 1α deregulation and α-synuclein oligomerization. Ann Neurol. 2015;77:15–32.

    Article  PubMed  CAS  Google Scholar 

  16. Soyal SM, Zara G, Ferger B, Felder TK, Kwik M, Nofziger C, et al. The PPARGC1A locus and CNS-specific PGC-1α isoforms are associated with Parkinson’s Disease. Neurobiol Dis. 2019;121:34–46.

    Article  PubMed  CAS  Google Scholar 

  17. Yang XD, Qian YW, Xu SQ, Wan DY, Sun FH, Chen SD, et al. Expression of the gene coading for PGC-1α in peripheral blood leukocytes and related gene variants in patients with Parkinson’s disease. Parkinsonism Relat Disord. 2018;51:30–5.

    Article  PubMed  Google Scholar 

  18. Paul KC, Sinsheimer JS, Cockburn M, Bronstein JM, Bordelon Y, Ritz B. NFE2L2, PPARGC1α, and pesticides and Parkinson’s disease risk and progression. Mechanisms Ageing Dev. 2018;173:1–8.

    Article  CAS  Google Scholar 

  19. Clark J, Reddy S, Zheng K, Betensky RA, Simon DK. Association of PGC-1alpha polymorphisms with age of onset and risk of Parkinson’s disease. BMC Med Genet. 2011;12:69–69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Yang X, Xu S, Qian Y, He X, Chen S, Xiao Q. Hypermethylation of the gene coding for PGC-1α in peripheral blood leukocytes of patients with Parkinson’s disease. Front Neurosci. 2020;14:97.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Shi CH, Cheng Y, Tang MB, Liu YT, Yang ZH, Li F, et al. Analysis of single nucleotide polymorphisms of STK32B, PPARGC1A and CTNNA3 gene with sporadic parkinson’s disease susceptibility in Chinese Han population. Front Neurol. 2018;9:387.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yang X, Xu S, Qian Y, He X, Chen S, Xiao Q. Hypermethylation of the gene coding for PGC-1α in peripheral blood leukocytes of patients with Parkinson’s disease. Front Neurosci. 2020;14:97.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhang Y, Zhao Y, Zhou X, Yi M, Li K, Zhou X, et al. Relationship between GWAS-linked three new loci in Essential tremor and risk of Parkinson’s disease in Chinese population. Parkinsonism Relat Disord. 2017;43:124–6.

    Article  PubMed  CAS  Google Scholar 

  24. Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord. 2015;30:1591–601.

    Article  PubMed  Google Scholar 

  25. Guo JF, Zhang L, Li K, Mei JP, Xue J, Chen J, et al. Coding mutations in NUS1 contribute to Parkinson’s disease. Proc Natl Acad Sci USA. 2018;115:11567–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Liu H, Wang Y, Pan H, Xu K, Jiang L, Zhao Y, et al. Association of rare heterozygous PLA2G6 variants with the risk of Parkinson’s disease. Neurobiol Aging. 2021;101:297.e5–97.e8.

    Article  CAS  Google Scholar 

  27. Pan HX, Zhao YW, Mei JP, Fang ZH, Wang Y, Zhou X, et al. GCH1 variants contribute to the risk and earlier age-at-onset of Parkinson’s disease: a two-cohort case-control study. Transl Neurodegener. 2020;9:31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Zhao YW, Pan HX, Liu Z, Wang Y, Zeng Q, Fang ZH, et al. The association between lysosomal storage disorder genes and Parkinson’s disease: a large cohort study in Chinese mainland population. Front Aging Neurosci. 2021;13:749109.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhao Y, Qin L, Pan H, Liu Z, Jiang L, He Y, et al. The role of genetics in Parkinson’s disease: a large cohort study in Chinese mainland population. Brain 2020;143:2220–34.

    Article  PubMed  Google Scholar 

  30. Li J, Zhao T, Zhang Y, Zhang K, Shi L, Chen Y, et al. Performance evaluation of pathogenicity-computation methods for missense variants. Nucleic Acids Res. 2018;46:7793–804.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Ioannidis NM, Rothstein JH, Pejaver V, Middha S, McDonnell SK, Baheti S, et al. REVEL: an ensemble method for predicting the pathogenicity of rare missense variants. Am J Hum Genet. 2016;99:877–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Carter H, Douville C, Stenson PD, Cooper DN, Karchin R. Identifying Mendelian disease genes with the variant effect scoring tool. BMC Genom. 2013;14(Suppl 3):S3.

    Article  Google Scholar 

  33. Huang X, Zhao Y, Pan H, Wang Y, Liu Z, Xu Q, et al. The association between LIN28A gene rare variants and Parkinson’s disease in Chinese population. Gene. 2022;829:146515.

    Article  PubMed  CAS  Google Scholar 

  34. Chang D, Nalls MA, Hallgrímsdóttir IB, Hunkapiller J, van der Brug M, Cai F, et al. A meta-analysis of genome-wide association studies identifies 17 new Parkinson’s disease risk loci. Nat Genet. 2017;49:1511–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Billingsley KJ, Bandres-Ciga S, Saez-Atienzar S, Singleton AB. Genetic risk factors in Parkinson’s disease. Cell Tissue Res. 2018;373:9–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Gureev AP, Popov VN. Nrf2/ARE pathway as a therapeutic target for the treatment of Parkinson diseases. Neurochem Res. 2019;44:2273–9.

    Article  PubMed  CAS  Google Scholar 

  37. Shi C-H, Cheng Y, Tang M-B, Liu Y-T, Yang Z-H, Li F, et al. Analysis of single nucleotide polymorphisms of STK32B, PPARGC1A and CTNNA3 gene with sporadic parkinson’s disease susceptibility in Chinese Han population. Front Neurol. 2018;9:387–7.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Müller SH, Girard SL, Hopfner F, Merner ND, Bourassa CV, Lorenz D, et al. Genome-wide association study in essential tremor identifies three new loci. Brain 2016;139:3163–9.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jo A, Lee Y, Kam TI, Kang SU, Neifert S, Karuppagounder SS, et al. PARIS farnesylation prevents neurodegeneration in models of Parkinson’s disease. Sci Transl Med. 2021;13.

  40. Zheng B, Liao Z, Locascio JJ, Lesniak KA, Roderick SS, Watt ML, et al. PGC-1α, a potential therapeutic target for early intervention in Parkinson’s disease. Sci Transl Med. 2010;2:52ra73.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Chen Y, Jiang Y, Yang Y, Huang X, Sun C. SIRT1 Protects Dopaminergic Neurons in Parkinson’s Disease Models via PGC-1α-Mediated Mitochondrial Biogenesis. Neurotox Res. 2021;39:1393–404.

    Article  PubMed  CAS  Google Scholar 

  42. Shin JH, Ko HS, Kang H, Lee Y, Lee YI, Pletinkova O, et al. PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson’s disease. Cell 2011;144:689–702.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank all patients and healthy individuals for permitting us to publish their information. This study was supported by the National key R&D projects (Grant No. 2021YFC2501204) and Key Project of Hunan Provincial Science and Technology Department (Grant No. 2021SK1011) to JG, Hunan Province Innovative Construction Project (No.2019SK2335) and Science and Technology Major Project of Hunan Provincial Science and Technology Department (Grant No. 2021SK1010) to JG, the Central Public-Interest Scientific Institution Basal Research Fund of Chinese Academy of Medical Sciences (Grant No.2018-12M-HL-025) to JG, the National Natural Science Foundation of China (Grant Nos. 81873785; 81974202; 82071439; U20A20355; 82001359) to JG and BT, and the innovative team program from Department of Science & Technology of Hunan Province (Grant No. 2019RS1010, No. 2020RC4043) to JG, and the Innovation-driven Team Project from Central South University (Grant No. 2020CX016) to JG, and the National key R&D projects (Grant No. 2021YFC2502100) to JL. We are also grateful for resources from the High-Performance Computing Center of Central South University.

Author information

Authors and Affiliations

Authors

Contributions

L-ZL: Conceptualization, Methodology, Writing - original draft. YZ: Data curation, Formal analysis, Methodology, Writing - review & editing. HP: Data curation, Writing - review & editing. YX: Data curation, Writing - review & editing. YW: Data curation, Writing - review & editing. QX: Data curation, Funding acquisition. XY: Data curation, Funding acquisition. JT: Data curation, Funding acquisition. JL: Funding acquisition, Writing - review & editing. BT: Project administration, Supervision, Funding acquisition, Writing - review & editing. JG: Project administration, Supervision, Funding acquisition, Writing - review & editing.

Corresponding author

Correspondence to Ji-feng Guo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics statement

The study was approved by the Ethics Committee of Xiangya Hospital, Central South University and followed the Declaration of Helsinki.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Lz., Zhao, Yw., Pan, Hx. et al. Association of rare PPARGC1A variants with Parkinson’s disease risk. J Hum Genet 67, 687–690 (2022). https://doi.org/10.1038/s10038-022-01074-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s10038-022-01074-5

This article is cited by

Search

Quick links