Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A review of major causative genes in congenital myopathies

Abstract

In this review, we focus on congenital myopathies, which are a genetically heterogeneous group of hereditary muscle diseases with slow or minimal progression. They are mainly defined and classified according to pathological features, with the major subtypes being core myopathy (central core disease), nemaline myopathy, myotubular/centronuclear myopathy, and congenital fiber-type disproportion myopathy. Recent advances in molecular genetics, especially next-generation sequencing technology, have rapidly increased the number of known causative genes for congenital myopathies; however, most of the diseases related to the novel causative genes are extremely rare. There remains no cure for congenital myopathies. However, there have been recent promising findings that could inform the development of therapy for several types of congenital myopathies, including myotubular myopathy, which indicates the importance of prompt and correct diagnosis. This review discusses the major causative genes (NEB, ACTA1, ADSSL1, RYR1, SELENON, MTM1, DNM2, and TPM3) for each subtype of congenital myopathies and the relevant latest findings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Histology of muscle biopsy samples obtained from patients with nemaline myopathy.
Fig. 2: Histology and electron microscopy of muscle biopsy samples obtained from patients with RYR1-related myopathy and SELENON-related myopathy.
Fig. 3: Histology of muscle biopsy samples obtained from patients with myotubular/centronuclear myopathy.
Fig. 4: Histology of muscle biopsy samples obtained from patients with TPM3-related myopathy. AD

Similar content being viewed by others

References

  1. Jungbluth H, Treves S, Zorzato F, Sarkozy A, Ochala J, Sewry C, et al. Congenital myopathies: disorders of excitation-contraction coupling and muscle contraction. Nat Rev Neurol. 2018;14:151–67.

    Article  CAS  Google Scholar 

  2. North KN, Wang CH, Clarke N, Jungbluth H, Vainzof M, Dowling JJ, et al. Approach to the diagnosis of congenital myopathies. Neuromuscul Disord. 2014;24:97–116.

    Article  Google Scholar 

  3. Jungbluth H, Muntoni F. Therapeutic aspects in congenital myopathies. Semin Pediatr Neurol. 2019;29:71–82.

    Article  Google Scholar 

  4. Laitila J, Wallgren-Pettersson C. Recent advances in nemaline myopathy. Neuromuscul Disord. 2021;31:955–67.

    Article  Google Scholar 

  5. Saito Y, Nishikawa A, Iida A, Mori-Yoshimura M, Oya Y, Ishiyama A, et al. ADSSL1 myopathy is the most common nemaline myopathy in Japan with variable clinical features. Neurology. 2020;95:e1500-11.

  6. Nilipour Y, Nafissi S, Tjust AE, Ravenscroft G, Hossein Nejad Nedai H, Taylor RL, et al. Ryanodine receptor type 3 (RYR3) as a novel gene associated with a myopathy with nemaline bodies. Eur J Neurol. 2018;25:841–7.

    Article  CAS  Google Scholar 

  7. Sewry CA, Laitila JM, Wallgren-Pettersson C. Nemaline myopathies: a current view. J Muscle Res Cell Motil. 2019;40:111–26.

    Article  CAS  Google Scholar 

  8. Zukosky K, Meilleur K, Traynor BJ, Dastgir J, Medne L, Devoto M, et al. Association of a novel ACTA1 mutation with a dominant progressive scapuloperoneal myopathy in an extended family. JAMA Neurol. 2015;72:689–98.

    Article  Google Scholar 

  9. Nowak KJ, Ravenscroft G, Laing NG. Skeletal muscle α-actin diseases (actinopathies): pathology and mechanisms. Acta Neuropathol. 2013;125:19–32.

    Article  CAS  Google Scholar 

  10. Ogasawara M, Nishino I. A review of core myopathy: central core disease, multiminicore disease, dusty core disease, and core-rod myopathy. Neuromuscul Disord. 2021;31:968–77.

    Article  Google Scholar 

  11. Shy GM, Engel WK, Somers JE, Wanko T. Nemaline myopathy. A new congenital myopathy. Brain. 1963;86:793–810.

    Article  CAS  Google Scholar 

  12. Conen PE, Murphy EG, Donohue WL. Light and electron microscopic studies of “myogranules” in a child with hypotonia and muscle weakness. Can Med Assoc J. 1963;89:983–6.

    CAS  Google Scholar 

  13. Malfatti E, Lehtokari VL, Böhm J, De Winter JM, Schäffer U, Estournet B, et al. Muscle histopathology in nebulin-related nemaline myopathy: ultrastrastructural findings correlated to disease severity and genotype. Acta Neuropathol Commun. 2014;2:44.

    Article  Google Scholar 

  14. Pelin K, Hilpelä P, Donner K, Sewry C, Akkari PA, Wilton SD, et al. Mutations in the nebulin gene associated with autosomal recessive nemaline myopathy. Proc Natl Acad Sci USA. 1999;96:2305–10.

    Article  CAS  Google Scholar 

  15. Nowak KJ, Wattanasirichaigoon D, Goebel HH, Wilce M, Pelin K, Donner K, et al. Mutations in the skeletal muscle alpha-actin gene in patients with actin myopathy and nemaline myopathy. Nat Genet. 1999;23:208–12.

    Article  CAS  Google Scholar 

  16. Amburgey K, Acker M, Saeed S, Amin R, Beggs AH, Bönnemann CG, et al. A cross-sectional study of nemaline myopathy. Neurology. 2021;96:e1425–36.

    Article  CAS  Google Scholar 

  17. Wang Q, Hu Z, Chang X, Yu M, Xie Z, Lv H, et al. Mutational and clinical spectrum in a cohort of Chinese patients with hereditary nemaline myopathy. Clin Genet. 2020;97:878–89.

    Article  CAS  Google Scholar 

  18. Chu M, Gregorio CC, Pappas CT. Nebulin, a multi-functional giant. J Exp Biol. 2016;219:146–52.

    Article  Google Scholar 

  19. Lehtokari VL, Kiiski K, Sandaradura SA, Laporte J, Repo P, Frey JA, et al. Mutation update: the spectra of nebulin variants and associated myopathies. Hum Mutat. 2014;35:1418–26.

    Article  CAS  Google Scholar 

  20. Kiiski KJ, Lehtokari VL, Vihola AK, Laitila JM, Huovinen S, Sagath LJ, et al. Dominantly inherited distal nemaline/cap myopathy caused by a large deletion in the nebulin gene. Neuromuscul Disord. 2019;29:97–107.

    Article  Google Scholar 

  21. Wallgren-Pettersson C, Pelin K, Nowak KJ, Muntoni F, Romero NB, Goebel HH, et al. Genotype-phenotype correlations in nemaline myopathy caused by mutations in the genes for nebulin and skeletal muscle alpha-actin. Neuromuscul Disord. 2004;14:461–70.

    Article  Google Scholar 

  22. Park YE, Shin JH, Kim HS, Lee CH, Kim DS. Characterization of congenital myopathies at a Korean neuromuscular center. Muscle Nerve. 2018;58:235–44.

    Article  Google Scholar 

  23. Colombo I, Scoto M, Manzur AY, Robb SA, Maggi L, Gowda V, et al. Congenital myopathies: natural history of a large pediatric cohort. Neurology. 2015;84:28–35.

    Article  Google Scholar 

  24. Wang CH, Dowling JJ, North K, Schroth MK, Sejersen T, Shapiro F, et al. Consensus statement on standard of care for congenital myopathies. J Child Neurol. 2012;27:363–82.

    Article  Google Scholar 

  25. Lehtokari VL, Pelin K, Sandbacka M, Ranta S, Donner K, Muntoni F, et al. Identification of 45 novel mutations in the nebulin gene associated with autosomal recessive nemaline myopathy. Hum Mutat. 2006;27:946–56.

    Article  CAS  Google Scholar 

  26. Romero NB, Lehtokari VL, Quijano-Roy S, Monnier N, Claeys KG, Carlier RY, et al. Core-rod myopathy caused by mutations in the nebulin gene. Neurology. 2009;73:1159–61.

    Article  CAS  Google Scholar 

  27. Scacheri PC, Hoffman EP, Fratkin JD, Semino-Mora C, Senchak A, Davis MR, et al. A novel ryanodine receptor gene mutation causing both cores and rods in congenital myopathy. Neurology. 2000;55:1689–96.

    Article  CAS  Google Scholar 

  28. Jungbluth H, Sewry CA, Counsell S, Allsop J, Chattopadhyay A, Mercuri E, et al. Magnetic resonance imaging of muscle in nemaline myopathy. Neuromuscul Disord. 2004;14:779–84.

    Article  Google Scholar 

  29. Laing NG, Dye DE, Wallgren-Pettersson C, Richard G, Monnier N, Lillis S, et al. Mutations and polymorphisms of the skeletal muscle alpha-actin gene (ACTA1). Hum Mutat. 2009;30:1267–77.

    Article  CAS  Google Scholar 

  30. de Winter JM, Ottenheijm CAC. Sarcomere dysfunction in nemaline myopathy. J Neuromuscul Dis. 2017;4:99–113.

    Article  Google Scholar 

  31. Sparrow JC, Nowak KJ, Durling HJ, Beggs AH, Wallgren-Pettersson C, Romero N, et al. Muscle disease caused by mutations in the skeletal muscle alpha-actin gene (ACTA1). Neuromuscul Disord. 2003;13:519–31.

    Article  Google Scholar 

  32. Agrawal PB, Strickland CD, Midgett C, Morales A, Newburger DE, Poulos MA, et al. Heterogeneity of nemaline myopathy cases with skeletal muscle alpha-actin gene mutations. Ann Neurol. 2004;56:86–96.

    Article  CAS  Google Scholar 

  33. Goebel HH, Anderson JR, Hübner C, Oexle K, Warlo I. Congenital myopathy with excess of thin myofilaments. Neuromuscul Disord. 1997;7:160–8.

    Article  CAS  Google Scholar 

  34. Jungbluth H, Sewry CA, Brown SC, Nowak KJ, Laing NG, Wallgren-Pettersson C, et al. Mild phenotype of nemaline myopathy with sleep hypoventilation due to a mutation in the skeletal muscle alpha-actin (ACTA1) gene. Neuromuscul Disord. 2001;11:35–40.

    Article  CAS  Google Scholar 

  35. Kaindl AM, Rüschendorf F, Krause S, Goebel HH, Koehler K, Becker C, et al. Missense mutations of ACTA1 cause dominant congenital myopathy with cores. J Med Genet. 2004;41:842–8.

    Article  CAS  Google Scholar 

  36. Garibaldi M, Fattori F, Pennisi EM, Merlonghi G, Fionda L, Vanoli F, et al. Novel ACTA1 mutation causes late-presenting nemaline myopathy with unusual dark cores. Neuromuscul Disord. 2021;31:139–48.

    Article  Google Scholar 

  37. Hung RM, Yoon G, Hawkins CE, Halliday W, Biggar D, Vajsar J. Cap myopathy caused by a mutation of the skeletal alpha-actin gene ACTA1. Neuromuscul Disord. 2010;20:238–40.

    Article  Google Scholar 

  38. Laing NG, Clarke NF, Dye DE, Liyanage K, Walker KR, Kobayashi Y, et al. Actin mutations are one cause of congenital fibre type disproportion. Ann Neurol. 2004;56:689–94.

    Article  CAS  Google Scholar 

  39. Sewry CA, Holton JL, Dick DJ, Muntoni F, Hanna MG. Zebra body myopathy is caused by a mutation in the skeletal muscle actin gene (ACTA1). Neuromuscul Disord. 2015;25:388–91.

    Article  CAS  Google Scholar 

  40. Castiglioni C, Cassandrini D, Fattori F, Bellacchio E, D’Amico A, Alvarez K, et al. Muscle magnetic resonance imaging and histopathology in ACTA1-related congenital nemaline myopathy. Muscle Nerve. 2014;50:1011–6.

    Article  CAS  Google Scholar 

  41. Quijano-Roy S, Carlier RY, Fischer D. Muscle imaging in congenital myopathies. Semin Pediatr Neurol. 2011;18:221–9.

    Article  Google Scholar 

  42. Park HJ, Hong YB, Choi YC, Lee J, Kim EJ, Lee JS, et al. ADSSL1 mutation relevant to autosomal recessive adolescent onset distal myopathy. Ann Neurol. 2016;79:231–43.

    Article  CAS  Google Scholar 

  43. Lipps G, Krauss G. Adenylosuccinate synthase from Saccharomyces cerevisiae: homologous overexpression, purification and characterization of the recombinant protein. Biochem J. 1999;341(Pt 3):537–43.

    Article  CAS  Google Scholar 

  44. Park HJ, Shin HY, Kim S, Kim SH, Lee Y, Lee JH, et al. Distal myopathy with ADSSL1 mutations in Korean patients. Neuromuscul Disord. 2017;27:465–72.

    Article  Google Scholar 

  45. Mroczek M, Durmus H, Bijarnia-Mahay S, Töpf A, Ghaoui R, Bryen S, et al. Expanding the disease phenotype of ADSSL1-associated myopathy in non-Korean patients. Neuromuscul Disord. 2020;30:310–4.

    Article  Google Scholar 

  46. Magee KR, Shy GM. A new congenital non-progressive myopathy. Brain. 1956;79:610–21.

    Article  CAS  Google Scholar 

  47. Dubowitz V, Pearse AG. Oxidative enzymes and phosphorylase in central-core disease of muscle. Lancet. 1960;2:23–4.

    Article  CAS  Google Scholar 

  48. Engel AG, Gomez MR, Groover RV. Multicore disease. A recently recognized congenital myopathy associated with multifocal degeneration of muscle fibers. Mayo Clin Proc. 1971;46:666–81.

    CAS  Google Scholar 

  49. Sewry CA, Wallgren-Pettersson C. Myopathology in congenital myopathies. Neuropathol Appl Neurobiol. 2017;43:5–23.

    Article  CAS  Google Scholar 

  50. Wu S, Ibarra MC, Malicdan MC, Murayama K, Ichihara Y, Kikuchi H, et al. Central core disease is due to RYR1 mutations in more than 90% of patients. Brain. 2006;129:1470–80.

    Article  Google Scholar 

  51. Ferreiro A, Quijano-Roy S, Pichereau C, Moghadaszadeh B, Goemans N, Bönnemann C, et al. Mutations of the selenoprotein N gene, which is implicated in rigid spine muscular dystrophy, cause the classical phenotype of multiminicore disease: reassessing the nosology of early-onset myopathies. Am J Hum Genet. 2002;71:739–49.

    Article  Google Scholar 

  52. Witherspoon JW, Meilleur KG. Review of RyR1 pathway and associated pathomechanisms. Acta Neuropathol Commun. 2016;4:121.

    Article  Google Scholar 

  53. Todd JJ, Sagar V, Lawal TA, Allen C, Razaqyar MS, Shelton MS, et al. Correlation of phenotype with genotype and protein structure in RYR1-related disorders. J Neurol. 2018;265:2506–24.

    Article  CAS  Google Scholar 

  54. Quane KA, Healy JM, Keating KE, Manning BM, Couch FJ, Palmucci LM, et al. Mutations in the ryanodine receptor gene in central core disease and malignant hyperthermia. Nat Genet. 1993;5:51–5.

    Article  CAS  Google Scholar 

  55. Klein A, Lillis S, Munteanu I, Scoto M, Zhou H, Quinlivan R, et al. Clinical and genetic findings in a large cohort of patients with ryanodine receptor 1 gene-associated myopathies. Hum Mutat. 2012;33:981–8.

    Article  CAS  Google Scholar 

  56. Clarke NF. Congenital fibre type disproportion—a syndrome at the crossroads of the congenital myopathies. Neuromuscul Disord. 2011;21:252–3.

    Article  Google Scholar 

  57. Clarke NF, Waddell LB, Cooper ST, Perry M, Smith RL, Kornberg AJ, et al. Recessive mutations in RYR1 are a common cause of congenital fiber type disproportion. Hum Mutat. 2010;31:E1544–50.

    Article  CAS  Google Scholar 

  58. Sato I, Wu S, Ibarra MC, Hayashi YK, Fujita H, Tojo M, et al. Congenital neuromuscular disease with uniform type 1 fiber and RYR1 mutation. Neurology. 2008;70:114–22.

    Article  CAS  Google Scholar 

  59. Garibaldi M, Rendu J, Brocard J, Lacene E, Faure J, Brochier G, et al. ‘Dusty core disease’ (DuCD): expanding morphological spectrum of RYR1 recessive myopathies. Acta Neuropathol Commun. 2019;7:3.

    Article  Google Scholar 

  60. Ogasawara M, Ogawa M, Nonaka I, Hayashi S, Noguchi S, Nishino I. Evaluation of the core formation process in congenital neuromuscular disease with uniform type 1 fiber and central core disease. J Neuropathol Exp Neurol. 2020;79:1370–5.

    Article  CAS  Google Scholar 

  61. von der Hagen M, Kress W, Hahn G, Brocke KS, Mitzscherling P, Huebner A, et al. Novel RYR1 missense mutation causes core rod myopathy. Eur J Neurol. 2008;15:e31–2.

    Article  Google Scholar 

  62. Wilmshurst JM, Lillis S, Zhou H, Pillay K, Henderson H, Kress W, et al. RYR1 mutations are a common cause of congenital myopathies with central nuclei. Ann Neurol. 2010;68:717–26.

    Article  CAS  Google Scholar 

  63. Amburgey K, McNamara N, Bennett LR, McCormick ME, Acsadi G, Dowling JJ. Prevalence of congenital myopathies in a representative pediatric united states population. Ann Neurol. 2011;70:662–5.

    Article  Google Scholar 

  64. Manzur AY, Sewry CA, Ziprin J, Dubowitz V, Muntoni F. A severe clinical and pathological variant of central core disease with possible autosomal recessive inheritance. Neuromuscul Disord. 1998;8:467–73.

    Article  CAS  Google Scholar 

  65. Patterson VH, Hill TR, Fletcher PJ, Heron JR. Central core disease: clinical and pathological evidence of progression within a family. Brain. 1979;102:581–94.

    Article  CAS  Google Scholar 

  66. Tojo M, Ozawa M, Nonaka I. Central core disease and congenital neuromuscular disease with uniform type 1 fibers in one family. Brain Dev. 2000;22:262–4.

    Article  CAS  Google Scholar 

  67. Oh SJ, Danon MJ. Nonprogressive congenital neuromuscular disease with uniform type 1 fiber. Arch Neurol. 1983;40:147–50.

    Article  CAS  Google Scholar 

  68. Sewry CA, Muller C, Davis M, Dwyer JS, Dove J, Evans G, et al. The spectrum of pathology in central core disease. Neuromuscul Disord. 2002;12:930–8.

    Article  CAS  Google Scholar 

  69. Klein A, Jungbluth H, Clement E, Lillis S, Abbs S, Munot P, et al. Muscle magnetic resonance imaging in congenital myopathies due to ryanodine receptor type 1 gene mutations. Arch Neurol. 2011;68:1171–9.

    Article  Google Scholar 

  70. Straub V, Carlier PG, Mercuri E. TREAT-NMD workshop: pattern recognition in genetic muscle diseases using muscle MRI: 25-26 February 2011, Rome, Italy. Neuromuscul Disord. 2012;22:S42–53.

    Article  Google Scholar 

  71. Dowling JJ, Arbogast S, Hur J, Nelson DD, McEvoy A, Waugh T, et al. Oxidative stress and successful antioxidant treatment in models of RYR1-related myopathy. Brain. 2012;135:1115–27.

    Article  Google Scholar 

  72. Todd JJ, Lawal TA, Witherspoon JW, Chrismer IC, Razaqyar MS, Punjabi M, et al. Randomized controlled trial of N-acetylcysteine therapy for RYR1-related myopathies. Neurology. 2020;94:e1434–44.

    Article  CAS  Google Scholar 

  73. Marino M, Stoilova T, Giorgi C, Bachi A, Cattaneo A, Auricchio A, et al. SEPN1, an endoplasmic reticulum-localized selenoprotein linked to skeletal muscle pathology, counteracts hyperoxidation by means of redox-regulating SERCA2 pump activity. Hum Mol Genet. 2015;24:1843–55.

    Article  CAS  Google Scholar 

  74. Moghadaszadeh B, Petit N, Jaillard C, Brockington M, Quijano Roy S, Merlini L, et al. Mutations in SEPN1 cause congenital muscular dystrophy with spinal rigidity and restrictive respiratory syndrome. Nat Genet. 2001;29:17–8.

    Article  CAS  Google Scholar 

  75. Villar-Quiles RN, von der Hagen M, Métay C, Gonzalez V, Donkervoort S, Bertini E, et al. The clinical, histologic, and genotypic spectrum of SEPN1-related myopathy: a case series. Neurology. 2020;95:e1512–27.

    Article  CAS  Google Scholar 

  76. Silwal A, Sarkozy A, Scoto M, Ridout D, Schmidt A, Laverty A, et al. Selenoprotein N-related myopathy: a retrospective natural history study to guide clinical trials. Ann Clin Transl Neurol. 2020;7:2288–96.

    Article  CAS  Google Scholar 

  77. Ferreiro A, Ceuterick-de Groote C, Marks JJ, Goemans N, Schreiber G, Hanefeld F, et al. Desmin-related myopathy with Mallory body-like inclusions is caused by mutations of the selenoprotein N gene. Ann Neurol. 2004;55:676–86.

    Article  CAS  Google Scholar 

  78. Clarke NF, Kidson W, Quijano-Roy S, Estournet B, Ferreiro A, Guicheney P, et al. SEPN1: associated with congenital fiber-type disproportion and insulin resistance. Ann Neurol. 2006;59:546–52.

    Article  CAS  Google Scholar 

  79. Mercuri E, Clements E, Offiah A, Pichiecchio A, Vasco G, Bianco F, et al. Muscle magnetic resonance imaging involvement in muscular dystrophies with rigidity of the spine. Ann Neurol. 2010;67:201–8.

    Article  Google Scholar 

  80. Spiro AJ, Shy GM, Gonatas NK. Myotubular myopathy. Persistence of fetal muscle in an adolescent boy. Arch Neurol. 1966;14:1–14.

    Article  CAS  Google Scholar 

  81. Sher JH, Rimalovski AB, Athanassiades TJ, Aronson SM. Familial centronuclear myopathy: a clinical and pathological study. Neurology. 1967;17:727–42.

    Article  CAS  Google Scholar 

  82. Romero NB. Centronuclear myopathies: a widening concept. Neuromuscul Disord. 2010;20:223–8.

    Article  Google Scholar 

  83. Hamanaka K, Inami I, Wada T, Mitsuhashi S, Noguchi S, Hayashi YK, et al. Muscle from a 20-week-old myotubular myopathy fetus is not myotubular. Neuromuscul Disord. 2016;26:234–5.

    Article  Google Scholar 

  84. Bitoun M, Maugenre S, Jeannet PY, Lacène E, Ferrer X, Laforêt P, et al. Mutations in dynamin 2 cause dominant centronuclear myopathy. Nat Genet. 2005;37:1207–9.

    Article  CAS  Google Scholar 

  85. Nicot AS, Toussaint A, Tosch V, Kretz C, Wallgren-Pettersson C, Iwarsson E, et al. Mutations in amphiphysin 2 (BIN1) disrupt interaction with dynamin 2 and cause autosomal recessive centronuclear myopathy. Nat Genet. 2007;39:1134–9.

    Article  CAS  Google Scholar 

  86. Ceyhan-Birsoy O, Agrawal PB, Hidalgo C, Schmitz-Abe K, DeChene ET, Swanson LC, et al. Recessive truncating titin gene, TTN, mutations presenting as centronuclear myopathy. Neurology. 2013;81:1205–14.

    Article  CAS  Google Scholar 

  87. Agrawal PB, Pierson CR, Joshi M, Liu X, Ravenscroft G, Moghadaszadeh B, et al. SPEG interacts with myotubularin, and its deficiency causes centronuclear myopathy with dilated cardiomyopathy. Am J Hum Genet. 2014;95:218–26.

    Article  CAS  Google Scholar 

  88. Vandersmissen I, Biancalana V, Servais L, Dowling JJ, Vander Stichele G, Van, et al. An integrated modelling methodology for estimating the prevalence of centronuclear myopathy. Neuromuscul Disord. 2018;28:766–77.

    Article  CAS  Google Scholar 

  89. Reumers SFI, Erasmus CE, Bouman K, Pennings M, Schouten M, Kusters B, et al. Clinical, genetic, and histological features of centronuclear myopathy in the Netherlands. Clin Genet. 2021;100:692–702.

    Article  CAS  Google Scholar 

  90. Noguchi S, Fujita M, Murayama K, Kurokawa R, Nishino I. Gene expression analyses in X-linked myotubular myopathy. Neurology. 2005;65:732–7.

    Article  CAS  Google Scholar 

  91. Robinson FL, Dixon JE. Myotubularin phosphatases: policing 3-phosphoinositides. Trends Cell Biol. 2006;16:403–12.

    Article  CAS  Google Scholar 

  92. Hnia K, Vaccari I, Bolino A, Laporte J. Myotubularin phosphoinositide phosphatases: cellular functions and disease pathophysiology. Trends Mol Med. 2012;18:317–27.

    Article  CAS  Google Scholar 

  93. Laporte J, Hu LJ, Kretz C, Mandel JL, Kioschis P, Coy JF, et al. A gene mutated in X-linked myotubular myopathy defines a new putative tyrosine phosphatase family conserved in yeast. Nat Genet. 1996;13:175–82.

    Article  CAS  Google Scholar 

  94. Biancalana V, Beggs AH, Das S, Jungbluth H, Kress W, Nishino I, et al. Clinical utility gene card for: centronuclear and myotubular myopathies. Eur J Hum Genet. 2012;20.

  95. Biancalana V, Scheidecker S, Miguet M, Laquerrière A, Romero NB, Stojkovic T, et al. Affected female carriers of MTM1 mutations display a wide spectrum of clinical and pathological involvement: delineating diagnostic clues. Acta Neuropathol. 2017;134:889–904.

    Article  CAS  Google Scholar 

  96. Lawlor MW, Dowling JJ. X-linked myotubular myopathy. Neuromuscul Disord. 2021;31:1004–12.

    Article  Google Scholar 

  97. McEntagart M, Parsons G, Buj-Bello A, Biancalana V, Fenton I, Little M, et al. Genotype-phenotype correlations in X-linked myotubular myopathy. Neuromuscul Disord. 2002;12:939–46.

    Article  Google Scholar 

  98. Annoussamy M, Lilien C, Gidaro T, Gargaun E, Chê V, Schara U, et al. X-linked myotubular myopathy: a prospective international natural history study. Neurology. 2019;92:e1852–67.

    Article  Google Scholar 

  99. Cocanougher BT, Flynn L, Yun P, Jain M, Waite M, Vasavada R, et al. Adult MTM1-related myopathy carriers: classification based on deep phenotyping. Neurology. 2019;93:e1535–42.

    Article  Google Scholar 

  100. Lawlor MW, Beggs AH, Buj-Bello A, Childers MK, Dowling JJ, James ES, et al. Skeletal muscle pathology in X-linked myotubular myopathy: review with cross-species comparisons. J Neuropathol Exp Neurol. 2016;75:102–10.

    Article  CAS  Google Scholar 

  101. Bevilacqua JA, Bitoun M, Biancalana V, Oldfors A, Stoltenburg G, Claeys KG, et al. “Necklace” fibers, a new histological marker of late-onset MTM1-related centronuclear myopathy. Acta Neuropathol. 2009;117:283–91.

    Article  Google Scholar 

  102. Dubowitz V, Sewry CA, Oldfors A. Muscle biopsy: a practical approach. 5th edn. Saunders Elsevier, Printed in China, pp 1–530. 2020.

  103. Cowling BS, Chevremont T, Prokic I, Kretz C, Ferry A, Coirault C, et al. Reducing dynamin 2 expression rescues X-linked centronuclear myopathy. J Clin Invest. 2014;124:1350–63.

    Article  CAS  Google Scholar 

  104. Maani N, Sabha N, Rezai K, Ramani A, Groom L, Eltayeb N, et al. Tamoxifen therapy in a murine model of myotubular myopathy. Nat Commun. 2018;9:4849.

    Article  Google Scholar 

  105. Gayi E, Neff LA, Massana Muñoz X, Ismail HM, Sierra M, Mercier T, et al. Tamoxifen prolongs survival and alleviates symptoms in mice with fatal X-linked myotubular myopathy. Nat Commun. 2018;9:4848.

    Article  Google Scholar 

  106. Böhm J, Biancalana V, Dechene ET, Bitoun M, Pierson CR, Schaefer E, et al. Mutation spectrum in the large GTPase dynamin 2, and genotype-phenotype correlation in autosomal dominant centronuclear myopathy. Hum Mutat. 2012;33:949–59.

    Article  Google Scholar 

  107. Gu C, Yaddanapudi S, Weins A, Osborn T, Reiser J, Pollak M, et al. Direct dynamin-actin interactions regulate the actin cytoskeleton. Embo J. 2010;29:3593–606.

    Article  CAS  Google Scholar 

  108. Fujise K, Okubo M, Abe T, Yamada H, Nishino I, Noguchi S, et al. Mutant BIN1-Dynamin 2 complexes dysregulate membrane remodeling in the pathogenesis of centronuclear myopathy. J Biol Chem. 2021;296:100077.

    Article  CAS  Google Scholar 

  109. Kenniston JA, Lemmon MA. Dynamin GTPase regulation is altered by PH domain mutations found in centronuclear myopathy patients. Embo J. 2010;29:3054–67.

    Article  CAS  Google Scholar 

  110. Gómez-Oca R, Cowling BS, Laporte J. Common pathogenic mechanisms in centronuclear and myotubular myopathies and latest treatment advances. Int J Mol Sci. 2021;22.

  111. Wang L, Barylko B, Byers C, Ross JA, Jameson DM, Albanesi JP. Dynamin 2 mutants linked to centronuclear myopathies form abnormally stable polymers. J Biol Chem. 2010;285:22753–7.

    Article  CAS  Google Scholar 

  112. Demonbreun AR, McNally EM. Dynamin 2 the rescue for centronuclear myopathy. J Clin Invest. 2014;124:976–8.

    Article  CAS  Google Scholar 

  113. Bitoun M, Bevilacqua JA, Prudhon B, Maugenre S, Taratuto AL, Monges S, et al. Dynamin 2 mutations cause sporadic centronuclear myopathy with neonatal onset. Ann Neurol. 2007;62:666–70.

    Article  CAS  Google Scholar 

  114. Catteruccia M, Fattori F, Codemo V, Ruggiero L, Maggi L, Tasca G, et al. Centronuclear myopathy related to dynamin 2 mutations: clinical, morphological, muscle imaging and genetic features of an Italian cohort. Neuromuscul Disord. 2013;23:229–38.

    Article  Google Scholar 

  115. Jungbluth H, Gautel M. Pathogenic mechanisms in centronuclear myopathies. Front Aging Neurosci. 2014;6:339.

    Article  Google Scholar 

  116. Fischer D, Herasse M, Bitoun M, Barragán-Campos HM, Chiras J, Laforêt P, et al. Characterization of the muscle involvement in dynamin 2-related centronuclear myopathy. Brain. 2006;129:1463–9.

    Article  Google Scholar 

  117. Biancalana V, Romero NB, Thuestad IJ, Ignatius J, Kataja J, Gardberg M, et al. Some DNM2 mutations cause extremely severe congenital myopathy and phenocopy myotubular myopathy. Acta Neuropathol Commun. 2018;6:93.

    Article  Google Scholar 

  118. Buono S, Ross JA, Tasfaout H, Levy Y, Kretz C, Tayefeh L, et al. Reducing dynamin 2 (DNM2) rescues DNM2-related dominant centronuclear myopathy. Proc Natl Acad Sci USA. 2018;115:11066–71.

    Article  CAS  Google Scholar 

  119. Brooke MH, Engel WK. The histographic analysis of human muscle biopsies with regard to fiber types. 4. Children’s biopsies. Neurology. 1969;19:591–605.

    Article  CAS  Google Scholar 

  120. Clarke NF, North KN. Congenital fiber type disproportion-30 years on. J Neuropathol Exp Neurol. 2003;62:977–89.

    Article  Google Scholar 

  121. Brooke MH. Congenital fiber type disproportion. In: Kakulas BA, editor. Clinical Studies in Myology: Proceedings of the 2nd International Congress on Muscle Diseases, Perth, Australia, Nov. 22–29, 1971. Amsterdam: Excerpta Medica; 1973. p. 147–59.

  122. Clarke NF. Congenital fiber-type disproportion. Semin Pediatr Neurol. 2011;18:264–71.

    Article  Google Scholar 

  123. Claeys KG. Congenital myopathies: an update. Dev Med Child Neurol. 2020;62:297–302.

    Article  Google Scholar 

  124. Clarke NF, Kolski H, Dye DE, Lim E, Smith RL, Patel R, et al. Mutations in TPM3 are a common cause of congenital fiber type disproportion. Ann Neurol. 2008;63:329–37.

    Article  CAS  Google Scholar 

  125. Lawlor MW, Dechene ET, Roumm E, Geggel AS, Moghadaszadeh B, Beggs AH. Mutations of tropomyosin 3 (TPM3) are common and associated with type 1 myofiber hypotrophy in congenital fiber type disproportion. Hum Mutat. 2010;31:176–83.

    Article  CAS  Google Scholar 

  126. Donkervoort S, Papadaki M, de Winter JM, Neu MB, Kirschner J, Bolduc V, et al. TPM3 deletions cause a hypercontractile congenital muscle stiffness phenotype. Ann Neurol. 2015;78:982–94.

    Article  CAS  Google Scholar 

  127. Laing NG, Wilton SD, Akkari PA, Dorosz S, Boundy K, Kneebone C, et al. A mutation in the alpha tropomyosin gene TPM3 associated with autosomal dominant nemaline myopathy. Nat Genet. 1995;9:75–9.

    Article  CAS  Google Scholar 

  128. Tan P, Briner J, Boltshauser E, Davis MR, Wilton SD, North K, et al. Homozygosity for a nonsense mutation in the alpha-tropomyosin slow gene TPM3 in a patient with severe infantile nemaline myopathy. Neuromuscul Disord. 1999;9:573–9.

    Article  CAS  Google Scholar 

  129. Kiphuth IC, Krause S, Huttner HB, Dekomien G, Struffert T, Schröder R. Autosomal dominant nemaline myopathy caused by a novel alpha-tropomyosin 3 mutation. J Neurol. 2010;257:658–60.

    Article  CAS  Google Scholar 

  130. Schreckenbach T, Schröder JM, Voit T, Abicht A, Neuen-Jacob E, Roos A, et al. Novel TPM3 mutation in a family with cap myopathy and review of the literature. Neuromuscul Disord. 2014;24:117–24.

    Article  CAS  Google Scholar 

  131. Hsu PJ, Wang HD, Tseng YC, Pan SW, Sampurna BP, Jong YJ, et al. L-Carnitine ameliorates congenital myopathy in a tropomyosin 3 de novo mutation transgenic zebrafish. J Biomed Sci. 2021;28:8.

    Article  CAS  Google Scholar 

  132. Liewluck T, Milone M, Tian X, Engel AG, Staff NP, Wong LJ. Adult-onset respiratory insufficiency, scoliosis, and distal joint hyperlaxity in patients with multiminicore disease due to novel Megf10 mutations. Muscle Nerve. 2016;53:984–8.

    Article  CAS  Google Scholar 

  133. Dafsari HS, Kocaturk NM, Daimagüler HS, Brunn A, Dötsch J, Weis J, et al. Bi-allelic mutations in uncoordinated mutant number-45 myosin chaperone B are a cause for congenital myopathy. Acta Neuropathol Commun. 2019;7:211.

    Article  CAS  Google Scholar 

  134. Donkervoort S, Kutzner CE, Hu Y, Lornage X, Rendu J, Stojkovic T, et al. Pathogenic variants in the myosin chaperone UNC-45B cause progressive myopathy with eccentric cores. Am J Hum Genet. 2020;107:1078–95.

    Article  CAS  Google Scholar 

  135. Majczenko K, Davidson AE, Camelo-Piragua S, Agrawal PB, Manfready RA, Li X, et al. Dominant mutation of CCDC78 in a unique congenital myopathy with prominent internal nuclei and atypical cores. Am J Hum Genet. 2012;91:365–71.

    Article  CAS  Google Scholar 

  136. Tajsharghi H, Oldfors A. Myosinopathies: pathology and mechanisms. Acta Neuropathol. 2013;125:3–18.

    Article  CAS  Google Scholar 

  137. Wallgren-Pettersson C, Lehtokari VL, Kalimo H, Paetau A, Nuutinen E, Hackman P, et al. Distal myopathy caused by homozygous missense mutations in the nebulin gene. Brain. 2007;130:1465–76.

    Article  Google Scholar 

  138. Jungbluth H. Central core disease. Orphanet J Rare Dis. 2007;2:25.

    Article  Google Scholar 

  139. Herman GE, Finegold M, Zhao W, de Gouyon B, Metzenberg A. Medical complications in long-term survivors with X-linked myotubular myopathy. J Pediatr. 1999;134:206–14.

    Article  CAS  Google Scholar 

  140. Beggs AH, Byrne BJ, De Chastonay S, Haselkorn T, Hughes I, James ES, et al. A multicenter, retrospective medical record review of X-linked myotubular myopathy: the recensus study. Muscle Nerve. 2018;57:550–60.

    Article  Google Scholar 

  141. Amburgey K, Tsuchiya E, de Chastonay S, Glueck M, Alverez R, Nguyen CT, et al. A natural history study of X-linked myotubular myopathy. Neurology. 2017;89:1355–64.

    Article  Google Scholar 

  142. Abath Neto O, Silva MR, Martins Cde A, Oliveira Ade S, Reed UC, Biancalana V, et al. A study of a cohort of X-linked myotubular myopathy at the clinical, histologic, and genetic levels. Pediatr Neurol. 2016;58:107–12.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Ms. Kaoru Tatezawa, Ms. Kazu Iwasawa, Ms. Yoko Tsutsumi, and Ms. Kanae Kanna, Mr. Hisayoshi Nakamura in NCNP for their technical assistance.

Funding

This study was supported partly by Intramural Research Grant (2-5) for Neurological and Psychiatric Disorders of NCNP and AMED under Grant Number JP21ek0109490h0002.

Author information

Authors and Affiliations

Authors

Contributions

M.O. designed the study. M.O. and I.N. wrote and edited the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ichizo Nishino.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All patients provided informed consent for using their samples for research after the diagnosis. This study was approved by the ethical committees of the NCNP (A2019-123).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogasawara, M., Nishino, I. A review of major causative genes in congenital myopathies. J Hum Genet 68, 215–225 (2023). https://doi.org/10.1038/s10038-022-01045-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s10038-022-01045-w

This article is cited by

Search

Quick links