Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

APOBEC mediated mutagenesis drives genomic heterogeneity in endometriosis

Abstract

Endometriosis is a benign gynecologic condition, acting as a precursor of certain histological subtypes of ovarian cancers. The epithelial cells of endometriotic tissues and normal uterine endometrium accumulated somatic mutations in cancer-associated genes such as phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) and Kirsten rat sarcoma (KRAS) proto-oncogene. To determine the genomic characteristic of endometriotic epithelial cells and normal uterine endometrium and to identify the predominant mutational process acting on them, we studied the somatic mutation profiles obtained from whole exome sequencing of 14 endometriotic epithelium and 11 normal uterine endometrium tissues and classified them into mutational signatures. We observed that single base substitutions 2/13 (SBS), attributed to Apolipoprotein B mRNA Editing Enzyme Catalytic Subunit (APOBEC) induced mutagenesis, were significant in endometriotic tissues, but not in the normal uterine endometrium. Additionally, the larger number and wider allele frequency distribution of APOBEC signature mutations, compared to cancer-associated driver mutations in endometriotic epithelium suggested APOBEC mutagenesis as an important source of mutational burden and heterogeneity in endometriosis. Further, the relative risk of enriched APOBEC signature mutations was higher in endometriosis patients who were carriers of APOBEC3A/3B germline deletion, a common polymorphism in East Asians which involves the complete loss of APOBEC3B coding region. Our results illustrate the significance of APOBEC induced mutagenesis in driving the genomic heterogeneity of endometriosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Vercellini P, Viganò P, Somigliana E, Fedele L. Endometriosis: pathogenesis and treatment. Nat Rev Endocrinol. 2014;10:261–75.

    Article  CAS  PubMed  Google Scholar 

  2. Dai Y, Li X, Shi J, Leng J. A review of the risk factors, genetics and treatment of endometriosis in Chinese women: a comparative update. Reprod Health. 2018;15:82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Munksgaard PS, Blaakaer J. The association between endometriosis and ovarian cancer: a review of histological, genetic and molecular alterations. Gynecol Oncol. 2012;124:164–9.

    Article  CAS  PubMed  Google Scholar 

  4. Anglesio MS, Papadopoulos N, Ayhan A, Nazeran TM, Noë M, Horlings HM, et al. Cancer-associated mutations in endometriosis without cancer. N. Engl J Med. 2017;376:1835–48.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Suda K, Nakaoka H, Yoshihara K, Ishiguro T, Tamura R, Mori Y, et al. Clonal expansion and diversification of cancer-associated mutations in endometriosis and normal endometrium. Cell Rep. 2018;24:1777–89.

    Article  CAS  PubMed  Google Scholar 

  6. Lac V, Verhoef L, Aguirre-Hernandez R, Nazeran TM, Tessier-Cloutier B, Praetorius T, et al. Iatrogenic endometriosis harbors somatic cancer-driver mutations. Hum Reprod. 2019;34:69–78.

    Article  CAS  PubMed  Google Scholar 

  7. Suda K, Nakaoka H, Yoshihara K, Ishiguro T, Adachi S, Kase H, et al. Different mutation profiles between epithelium and stroma in endometriosis and normal endometrium. Hum Reprod. 2019;34:1899–905.

    Article  CAS  PubMed  Google Scholar 

  8. Helleday T, Eshtad S, Nik-Zainal S. Mechanisms underlying mutational signatures in human cancers. Nat Rev Genet. 2014;15:585–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SAJR, Behjati S, Biankin AV, et al. Signatures of mutational processes in human cancer. Nature. 2013;500:415–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Alexandrov LB, Nik-Zainal S, Wedge DC, Campbell PJ, Stratton MR. Deciphering signatures of mutational processes operative in human cancer. Cell Rep. 2013;3:246–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. The IC, of Whole TP, Genomes Consortium. Pan-cancer analysis of whole genomes. Nature. 2020;578:82.

    Article  CAS  Google Scholar 

  12. Alexandrov LB, Kim J, Haradhvala NJ, Huang MN, Tian Ng AW, Wu Y, et al. The repertoire of mutational signatures in human cancer. Nature. 2020;578:94–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang YK, Bashashati A, Anglesio MS, Cochrane DR, Grewal DS, Ha G, et al. Genomic consequences of aberrant DNA repair mechanisms stratify ovarian cancer histotypes. Nat Genet. 2017;49:856–65.

    Article  CAS  PubMed  Google Scholar 

  14. Burns MB, Temiz NA, Harris RS. Evidence for APOBEC3B mutagenesis in multiple human cancers. Nat Genet. 2013;45:977–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kidd JM, Newman TL, Tuzun E, Kaul R, Eichler EE. Population stratification of a common APOBEC gene deletion polymorphism. PLoS Genet. 2007;3:0584–92.

    Article  CAS  Google Scholar 

  16. Gansmo LB, Romundstad P, Hveem K, Vatten L, Nik-Zainal S, Lønning PE, et al. APOBEC3A/B deletion polymorphism and cancer risk. Carcinogenesis. 2018;39:118–24.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang T, Cai J, Chang J, Yu D, Wu C, Yan T, et al. Evidence of associations of APOBEC3B gene deletion with susceptibility to persistent HBV infection and hepatocellular carcinoma. Hum Mol Genet. 2013;22:1262–9.

    Article  CAS  PubMed  Google Scholar 

  18. Caval V, Suspène R, Shapira M, Vartanian JP, Wain-Hobson S. A prevalent cancer susceptibility APOBEC3A hybrid allele bearing APOBEC3B 3′UTR enhances chromosomal DNA damage. Nat Commun. 2014;5:5129.

    Article  CAS  PubMed  Google Scholar 

  19. Nik-Zainal S, Wedge DC, Alexandrov LB, Petljak M, Butler AP, Bolli N, et al. Association of a germline copy number polymorphism of APOBEC3A and APOBEC3B with burden of putative APOBEC-dependent mutations in breast cancer. Nat Genet. 2014;46:487–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Middlebrooks CD, Banday AR, Matsuda K, Udquim K-I, Onabajo OO, Paquin A, et al. Association of germline variants in the APOBEC3 region with cancer risk and enrichment with APOBEC-signature mutations in tumors. Nat Genet. 2016;48:1330–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Imahashi M, Izumi T, Watanabe D, Imamura J, Matsuoka K, Ode H, et al. Lack of association between intact/deletion polymorphisms of the APOBEC3B gene and HIV-1 risk. PLoS One. 2014;9:e92861.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Itaya S, Nakajima T, Kaur G, Terunuma H, Ohtani H, Mehra N, et al. No evidence of an association between the APOBEC3B deletion polymorphism and susceptibility to HIV infection and AIDS in Japanese and Indian populations. J Infect Dis. 2010;202:815–6.

    Article  PubMed  Google Scholar 

  23. Yamazaki H, Shirakawa K, Matsumoto T, Hirabayashi S, Murakawa Y, Kobayashi M, et al. Endogenous APOBEC3B overexpression constitutively generates DNA substitutions and deletions in myeloma cells. Sci Rep. 2019;9:7122.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Alexandrov LB, Stratton MR. Mutational signatures: the patterns of somatic mutations hidden in cancer genomes. Curr Opin Genet Dev. 2014;24:52–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gori K, Baez-Ortega A. sigfit: flexible Bayesian inference of mutational signatures. bioRxiv. 2020. https://doi.org/10.1101/372896.

  26. Maura F, Degasperi A, Nadeu F, Leongamornlert D, Davies H, Moore L, et al. A practical guide for mutational signature analysis in hematological malignancies. Nat Commun. 2019;10:2969.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Adachi S, Tajima A, Quan J, Haino K, Yoshihara K, Masuzaki H, et al. Meta-analysis of genome-wide association scans for genetic susceptibility to endometriosis in Japanese population. J Hum Genet. 2010;55:816–21.

    Article  PubMed  Google Scholar 

  28. Hata Y, Nakaoka H, Yoshihara K, Adachi S, Haino K, Yamaguchi M, et al. A nonsynonymous variant of IL1A is associated with endometriosis in Japanese population. J Hum Genet. 2013;58:517–20.

    Article  CAS  PubMed  Google Scholar 

  29. Nakaoka H, Gurumurthy A, Hayano T, Ahmadloo S, Omer WH, Yoshihara K, et al. Allelic imbalance in regulation of ANRIL through chromatin interaction at 9p21 endometriosis risk locus. PLoS Genet. 2016;12:e1005893.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Ngô C, Chéreau C, Nicco C, Weill B, Chapron C, Batteux F. Reactive oxygen species controls endometriosis progression. Am J Pathol. 2009;175:225–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Agarwal A, Gupta S, Sharma RK. Role of oxidative stress in female reproduction. Reprod Biol Endocrinol. 2005;3:1–21.

    Article  CAS  Google Scholar 

  32. Strassmann BI. The evolution of endometrial cycles and menstruation. Q Rev Biol. 1996;71:181–220.

    Article  CAS  PubMed  Google Scholar 

  33. Swanton C, Mcgranahan N, Starrett GJ, Harris RS. APOBEC enzymes: mutagenic fuel for cancer evolution and heterogeneity. Cancer Discov. 2016;5:704–12.

    Article  CAS  Google Scholar 

  34. Koh G, Degasperi A, Zou X, Momen S, Nik-Zainal S. Mutational signatures: emerging concepts, caveats and clinical applications. Nat Rev Cancer. 2021;27:1–9.

    Google Scholar 

  35. Anglesio MS, Bashashati A, Wang YK, Senz J, Ha G, Yang W, et al. Multifocal endometriotic lesions associated with cancer are clonal and carry a high mutation burden. J Pathol. 2015;236:201–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shibuya Y, Tokunaga H, Saito S, Shimokawa K, Katsuoka F, Bin L, et al. Identification of somatic genetic alterations in ovarian clear cell carcinoma with next generation sequencing. Genes Chromosom Cancer. 2018;57:51–60.

    Article  CAS  PubMed  Google Scholar 

  37. Suda K, Diaz LA, Yoshihara K, Nakaoka H, Yachida N, Motoyama T, et al. Clonal lineage from normal endometrium to ovarian clear cell carcinoma through ovarian endometriosis. Cancer Sci. 2020;111:3000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim HS, Kim TH, Chung HH, Song YS. Risk and prognosis of ovarian cancer in women with endometriosis: a meta-analysis. Br J Cancer. 2014;110:1878–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. McGranahan N, Favero F, De Bruin EC, Birkbak NJ, Szallasi Z, Swanton C. Clonal status of actionable driver events and the timing of mutational processes in cancer evolution. Sci Transl Med. 2015;7:283ra54.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Castro-Giner F, Ratcliffe P, Tomlinson I. The mini-driver model of polygenic cancer evolution. Nat Rev Cancer. 2015;15:680–5.

    Article  CAS  PubMed  Google Scholar 

  41. Li X, Thirumalai D. Interplay of Driver, Mini-Driver, and Deleterious Passenger Mutations on Cancer Progression. bioRxiv. 2016. https://doi.org/10.1101/084392.

  42. Caswell DR, Swanton C. The role of tumour heterogeneity and clonal cooperativity in metastasis, immune evasion and clinical outcome. BMC Med. 2017;15:1–9.

    Article  CAS  Google Scholar 

  43. Yamaguchi K, Mandai M, Toyokuni S, Hamanishi J, Higuchi T, Takakura K, et al. Contents of endometriotic cysts, especially the high concentration of free iron, are a possible cause of carcinogenesis in the cysts through the iron-induced persistent oxidative stress. Clin Cancer Res. 2008;14:32–40.

    Article  CAS  PubMed  Google Scholar 

  44. Kajiyama H, Suzuki S, Yoshihara M, Tamauchi S, Yoshikawa N, Niimi K, et al. Endometriosis and cancer. Free Radic Biol Med. 2019;133:186–92.

    Article  CAS  PubMed  Google Scholar 

  45. Busuttil RA, Rubio M, Dollé ME, Campisi J, Vijg J. Oxygen accelerates the accumulation of mutations during the senescence and immortalization of murine cells in culture. Aging Cell. 2003;2:287–94.

    Article  CAS  PubMed  Google Scholar 

  46. Qi G, Xiong H, Zhou C. APOBEC3 deletion polymorphism is associated with epithelial ovarian cancer risk among Chinese women. Tumor Biol. 2014;35:5723–6.

    Article  CAS  Google Scholar 

  47. Hollis RL, Thomson JP, Stanley B, Churchman M, Meynert AM, Rye T, et al. Molecular stratification of endometrioid ovarian carcinoma predicts clinical outcome. Nat Commun. 2020;11:1–0.

    Article  CAS  Google Scholar 

  48. Revathidevi S, Manikandan M, Rao AKDM, Vinothkumar V, Arunkumar G, Rajkumar KS, et al. Analysis of APOBEC3A/3B germline deletion polymorphism in breast, cervical and oral cancers from South India and its impact on miRNA regulation. Tumor Biol. 2016;37:11983–90.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Junko Kajiwara, Junko Kitayama, Yumiko Sato and Anna Ishida for their technical assistances.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hirofumi Nakaoka or Ituro Inoue.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Revathidevi, S., Nakaoka, H., Suda, K. et al. APOBEC mediated mutagenesis drives genomic heterogeneity in endometriosis. J Hum Genet 67, 323–329 (2022). https://doi.org/10.1038/s10038-021-01003-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s10038-021-01003-y

This article is cited by

Search

Quick links