Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Autosomal dominant familial acanthosis nigricans caused by a C-terminal nonsense mutation of FGFR3

Abstract

FGFR3 encodes a transmembrane receptor tyrosine kinase that has six autophosphorylation sites of tyrosine. Among them, Y770 is a negative regulatory site for the downstream signaling of FGFR3. Constitutive active mutations in FGFR3 are involved in human developmental disorders including familial acanthosis nigricans, an autosomal dominant disorder characterized by general hyperpigmentation with mild acanthosis of the epidermis. Here, we report two unrelated cases of familial acanthosis nigricans with a heterozygous c.2302G>T (p.E768*) mutation in FGFR3 (NM_000142.5). FGFR3 mRNA purified from the skin lesion neither showed aberrant splicing nor nonsense-mediated mRNA decay, indicating that the FGFR3 mutant simply lacked the C-terminal 768–806 amino acids including Y770. While all of the known pathogenic mutations were missense mutations in FGFR3 showing autosomal dominant trait, the c.2302G>T mutation of FGFR3 is a unique autosomal dominant nonsense mutation that causes familial acanthosis nigricans probably via loss of negative regulatory autophosphorylation site of FGFR3.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

References

  1. Blomberg M, Jeppesen EM, Skovby F, Benfeldt E. FGFR3 mutations and the skin: report of a patient with a FGFR3 gene mutation, acanthosis nigricans, hypochondroplasia and hyperinsulinemia and review of the literature. Dermatology. 2010;220:297–305.

    Article  CAS  Google Scholar 

  2. Tavormina PL, Bellus GA, Webster MK, Bamshad MJ, Fraley AE, McIntosh I, et al. A novel skeletal dysplasia with developmental delay and acanthosis nigricans is caused by a Lys650Met mutation in the fibroblast growth factor receptor 3 gene. Am J Hum Genet. 1999;64:722–31.

    Article  CAS  Google Scholar 

  3. Meyers GA, Orlow SJ, Munro IR, Przylepa KA, Jabs EW. Fibroblast growth factor receptor 3 (FGFR3) transmembrane mutation in Crouzon syndrome with acanthosis nigricans. Nat Genet. 1995;11:462–4.

    Article  CAS  Google Scholar 

  4. Tavormina PL, Shiang R, Thompson LM, Zhu YZ, Wilkin DJ, Lachman RS, et al. Thanatophoric dysplasia (types I and II) caused by distinct mutations in fibroblast growth factor receptor 3. Nat Genet. 1995;9:321–8.

    Article  CAS  Google Scholar 

  5. Rousseau F, Bonaventure J, Legeai-Mallet L, Pelet A, Rozet JM, Maroteaux P, et al. Mutations in the gene encoding fibroblast growth factor receptor-3 in achondroplasia. Nature. 1994;371:252–4.

    Article  CAS  Google Scholar 

  6. Bellus GA, McIntosh I, Smith EA, Aylsworth AS, Kaitila I, Horton WA, et al. A recurrent mutation in the tyrosine kinase domain of fibroblast growth factor receptor 3 causes hypochondroplasia. Nat Genet. 1995;10:357–9.

    Article  CAS  Google Scholar 

  7. Fukuchi K, Tatsuno K, Matsushita K, Kubo A, Ito T, Tokura Y. Familial acanthosis nigricans with p.K650T FGFR3 mutation. J Dermatol. 2018;45:207–10.

    Article  CAS  Google Scholar 

  8. Yasuda M, Morimoto N, Shimizu A, Toyoshima T, Yokoyama Y, Ishikawa O. Familial acanthosis nigricans with the FGFR3 mutation: differences of pigmentation between male and female patients. J Dermatol. 2018;45:1357–61.

    Article  CAS  Google Scholar 

  9. Bellus GA, Spector EB, Speiser PW, Weaver CA, Garber AT, Bryke CR, et al. Distinct missense mutations of the FGFR3 lys650 codon modulate receptor kinase activation and the severity of the skeletal dysplasia phenotype. Am J Hum Genet. 2000;67:1411–21.

    Article  CAS  Google Scholar 

  10. Hart KC, Robertson SC, Donoghue DJ. Identification of tyrosine residues in constitutively activated fibroblast growth factor receptor 3 involved in mitogenesis, Stat activation, and phosphatidylinositol 3-kinase activation. Mol Biol Cell. 2001;12:931–42.

    Article  CAS  Google Scholar 

  11. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581:434–43.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the patients and patient’s family members for their kind collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akiharu Kubo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tahara, U., Yasuda, M., Yamada, Y. et al. Autosomal dominant familial acanthosis nigricans caused by a C-terminal nonsense mutation of FGFR3. J Hum Genet 66, 831–834 (2021). https://doi.org/10.1038/s10038-021-00905-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s10038-021-00905-1

Search

Quick links