Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

New paradigms of USP53 disease: normal GGT cholestasis, BRIC, cholangiopathy, and responsiveness to rifampicin

Abstract

Biallelic variants in the USP53 gene have recently been reported to segregate with normal gamma glutamyltransferase (GGT) cholestasis. Using whole-exome sequencing (WES), we detected two USP53 homozygous variants (c.951delT; p. Phe317fs and c.1744C>T; p. Arg582*) in five additional cases, including an unpublished cousin of a previously described family with intractable itching and normal GGT cholestasis. Three patients, a child and two adults, presented with recurrent episodes of normal GGT cholestasis, consistent with a diagnosis of benign recurrent intrahepatic cholestasis (BRIC). Cholangiopathic changes, possibly autoimmune in origin, were recognized in some patients. Additional phenotypic details in one patient included an enlarged left kidney, and speech/developmental delay. Notably, two patients exhibited a complete response to rifampicin, and one responded to ursodeoxycholic acid (UDCA). Two adult patients were suspected to have autoimmune liver disease and treated with steroids. This report describes new cases of USP53 disease presenting with normal GGT cholestasis or BRIC in three children and two adults. We also describe the novel finding of a dramatic response to rifampicin. The association of cholangiopathy with normal GGT cholestasis provides a diagnostic challenge and remains poorly understood.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Families with biallelic variants in USP53 gene.
Fig. 2: Liver biopsy samples obtained in two BRIC occasions from patient IV:2 (family 3).
Fig. 3: Possible relation between ATP8B1, TJP2, USP53, and LSR.

References

  1. Henkel SA, Squires JH, Ayers M, Ganoza A, McKiernan P, Squires JE. Expanding etiology of progressive familial intrahepatic cholestasis. World J Hepatol. 2019;11:450–63.

    PubMed  PubMed Central  Google Scholar 

  2. Maddirevula S, Alhebbi H, Alqahtani A, Algoufi T, Alsaif HS, Ibrahim N, et al. Identification of novel loci for pediatric cholestatic liver disease defined by KIF12, PPM1F, USP53, LSR, and WDR83OS pathogenic variants. Genet Med. 2019;21:1164–72.

    CAS  PubMed  Google Scholar 

  3. Shaheen R, Alsahli S, Ewida N, Alzahrani F, Shamseldin HE, Patel N, et al. Biallelic Mutations in Tetratricopeptide Repeat Domain 26 (Intraflagellar Transport 56) Cause Severe Biliary Ciliopathy in Humans. Hepatology. 2019;71:2067–79.

    Google Scholar 

  4. Luketic VA, Shiffman ML. Benign recurrent intrahepatic cholestasis. Clin Liver Dis. 2004;8:133–49.

    PubMed  Google Scholar 

  5. Folvik G, Hilde O, Helge GO. Benign recurrent intrahepatic cholestasis: review and long-term follow-up of five cases. Scand J Gastroenterol. 2012;47:482–8.

    CAS  PubMed  Google Scholar 

  6. Piazzolla M, Castellaneta N, Novelli A, Agolini E, Cocciadiferro D, Resta L, et al. Nonsense variant of ATP8B1 gene in heterozygosis and benign recurrent intrahepatic cholestasis: A case report and review of literature. World J Hepatol. 2020;12:64–71.

    PubMed  PubMed Central  Google Scholar 

  7. Sohn MJ, Woo MH, Seong MW, Park SS, Kang GH, Moon JS, et al. Benign recurrent intrahepatic cholestasis type 2 in siblings with novel ABCB11 mutations. Pediatr Gastroenterol Hepatol Nutr. 2019;22:201–6.

    PubMed  PubMed Central  Google Scholar 

  8. Zhang J, Liu LL, Gong JY, Hao CZ, Qiu YL, Lu Y, et al. TJP2 hepatobiliary disorders: novel variants and clinical diversity. Hum Mutat. 2020;41:502–11.

    CAS  PubMed  Google Scholar 

  9. Qiu YL, Gong JY, Feng JY, Wang RX, Han J, Liu T, et al. Defects in myosin VB are associated with a spectrum of previously undiagnosed low gamma-glutamyltransferase cholestasis. Hepatology. 2017;65:1655–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Quesada V, Diaz-Perales A, Gutierrez-Fernandez A, Garabaya C, Cal S, Lopez-Otin C. Cloning and enzymatic analysis of 22 novel human ubiquitin-specific proteases. Biochem Biophys Res Commun. 2004;314:54–62.

    CAS  PubMed  Google Scholar 

  11. Kazmierczak M, Harris SL, Kazmierczak P, Shah P, Starovoytov V, Ohlemiller KK, et al. Progressive hearing loss in mice carrying a mutation in Usp53. J Neurosci. 2015;35:15582–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Carlton VE, Harris BZ, Puffenberger EG, Batta AK, Knisely AS, Robinson DL, et al. Complex inheritance of familial hypercholanemia with associated mutations in TJP2 and BAAT. Nat Genet. 2003;34:91–6.

    CAS  PubMed  Google Scholar 

  13. Sambrotta M, Strautnieks S, Papouli E, Rushton P, Clark BE, Parry DA, et al. Mutations in TJP2 cause progressive cholestatic liver disease. Nat Genet. 2014;46:326–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Wei CS, Becher N, Friis JB, Ott P, Vogel I, Gronbaek H. New tight junction protein 2 variant causing progressive familial intrahepatic cholestasis type 4 in adults: a case report. World J Gastroenterol. 2020;26:550–61.

    PubMed  PubMed Central  Google Scholar 

  15. Zhou S, Hertel PM, Finegold MJ, Wang L, Kerkar N, Wang J, et al. Hepatocellular carcinoma associated with tight-junction protein 2 deficiency. Hepatology. 2015;62:1914–6.

    PubMed  PubMed Central  Google Scholar 

  16. Parsons DW, Roy A, Yang Y, Wang T, Scollon S, Bergstrom K, et al. Diagnostic yield of clinical tumor and germline whole-exome sequencing for children with solid tumors. JAMA Oncol. 2016;2:616–24.

    PubMed  PubMed Central  Google Scholar 

  17. Kim MA, Kim YR, Sagong B, Cho HJ, Bae JW, Kim J, et al. Genetic analysis of genes related to tight junction function in the Korean population with non-syndromic hearing loss. PLoS One. 2014;9:e95646.

    PubMed  PubMed Central  Google Scholar 

  18. Wang HY, Zhao YL, Liu Q, Yuan H, Gao Y, Lan L, et al. Identification of two disease-causing genes TJP2 and GJB2 in a Chinese family with unconditional autosomal dominant nonsyndromic hereditary hearing impairment. Chin Med J (Engl). 2015;128:3345–51.

    Google Scholar 

  19. Zhang J, Yang Y, Gong JY, Li LT, Li JQ, Zhang MH, et al. Low-GGT intrahepatic cholestasis associated with biallelic USP53 variants: clinical, histological, and ultrastructural characterization. Liver Int. 2020;40:1142–50.

    CAS  PubMed  Google Scholar 

  20. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24.

    PubMed  PubMed Central  Google Scholar 

  21. Uehara T, Yamada M, Umetsu S, Nittono H, Suzuki H, Fujisawa T, et al. Biallelic Mutations in the LSR Gene Cause a Novel Type of Infantile Intrahepatic Cholestasis. J Pediatr. 2020;221:251–4.

    CAS  PubMed  Google Scholar 

  22. Stapelbroek JM, van Erpecum KJ, Klomp LW, Houwen RH. Liver disease associated with canalicular transport defects: current and future therapies. J Hepatol. 2010;52:258–71.

    CAS  PubMed  Google Scholar 

  23. Verhulst PM, van der Velden LM, Oorschot V, van Faassen EE, Klumperman J, Houwen RH, et al. A flippase-independent function of ATP8B1, the protein affected in familial intrahepatic cholestasis type 1, is required for apical protein expression and microvillus formation in polarized epithelial cells. Hepatology. 2010;51:2049–60.

    CAS  PubMed  Google Scholar 

  24. van Mil SW, Klomp LW, Bull LN, Houwen RH. FIC1 disease: a spectrum of intrahepatic cholestatic disorders. Semin Liver Dis. 2001;21:535–44.

    PubMed  Google Scholar 

  25. Pawlikowska L, Strautnieks S, Jankowska I, Czubkowski P, Emerick K, Antoniou A, et al. Differences in presentation and progression between severe FIC1 and BSEP deficiencies. J Hepatol. 2010;53:170–8.

    PubMed  PubMed Central  Google Scholar 

  26. Knisely AS, Strautnieks SS, Meier Y, Stieger B, Byrne JA, Portmann BC, et al. Hepatocellular carcinoma in ten children under five years of age with bile salt export pump deficiency. Hepatology. 2006;44:478–86.

    CAS  PubMed  Google Scholar 

  27. Strautnieks SS, Byrne JA, Pawlikowska L, Cebecauerova D, Rayner A, Dutton L, et al. Severe bile salt export pump deficiency: 82 different ABCB11 mutations in 109 families. Gastroenterology. 2008;134:1203–14.

    CAS  PubMed  Google Scholar 

  28. van Ooteghem NA, Klomp LW, van Berge-Henegouwen GP, Houwen RH. Benign recurrent intrahepatic cholestasis progressing to progressive familial intrahepatic cholestasis: low GGT cholestasis is a clinical continuum. J Hepatol. 2002;36:439–43.

    PubMed  Google Scholar 

  29. Hadj-Rabia S, Baala L, Vabres P, Hamel-Teillac D, Jacquemin E, Fabre M, et al. Claudin-1 gene mutations in neonatal sclerosing cholangitis associated with ichthyosis: a tight junction disease. Gastroenterology. 2004;127:1386–90.

    CAS  PubMed  Google Scholar 

  30. Andersen JP, Vestergaard AL, Mikkelsen SA, Mogensen LS, Chalat M, Molday RS. P4-ATPases as phospholipid flippases-structure, function, and enigmas. Front Physiol. 2016;7:275.

    PubMed  PubMed Central  Google Scholar 

  31. Folmer DE, Elferink RP, Paulusma CC. P4 ATPases - lipid flippases and their role in disease. Biochim Biophys Acta. 2009;1791:628–35.

    CAS  PubMed  Google Scholar 

  32. Giepmans BN, van Ijzendoorn SC. Epithelial cell-cell junctions and plasma membrane domains. Biochim Biophys Acta. 2009;1788:820–31.

    CAS  PubMed  Google Scholar 

  33. Gissen P, Arias IM. Structural and functional hepatocyte polarity and liver disease. J Hepatol. 2015;63:1023–37.

    PubMed  PubMed Central  Google Scholar 

  34. Pawlikowska L, Groen A, Eppens EF, Kunne C, Ottenhoff R, Looije N, et al. A mouse genetic model for familial cholestasis caused by ATP8B1 mutations reveals perturbed bile salt homeostasis but no impairment in bile secretion. Hum Mol Genet. 2004;13:881–92.

    CAS  PubMed  Google Scholar 

  35. Groen A, Kunne C, Paulusma CC, Kramer W, Agellon LB, Bull LN, et al. Intestinal bile salt absorption in Atp8b1 deficient mice. J Hepatol. 2007;47:114–22.

    CAS  PubMed  Google Scholar 

  36. Alvarez L, Jara P, Sanchez-Sabate E, Hierro L, Larrauri J, Diaz MC, et al. Reduced hepatic expression of farnesoid X receptor in hereditary cholestasis associated to mutation in ATP8B1. Hum Mol Genet. 2004;13:2451–60.

    CAS  PubMed  Google Scholar 

  37. Paulusma CC, de Waart DR, Kunne C, Mok KS, Elferink RP. Activity of the bile salt export pump (ABCB11) is critically dependent on canalicular membrane cholesterol content. J Biol Chem. 2009;284:9947–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Deng BC, Lv S, Cui W, Zhao R, Lu X, Wu J, et al. Novel ATP8B1 mutation in an adult male with progressive familial intrahepatic cholestasis. World J Gastroenterol. 2012;18:6504–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Marschall HU, Wagner M, Zollner G, Fickert P, Diczfalusy U, Gumhold J, et al. Complementary stimulation of hepatobiliary transport and detoxification systems by rifampicin and ursodeoxycholic acid in humans. Gastroenterology. 2005;129:476–85.

    PubMed  Google Scholar 

  40. Wietholtz H, Marschall HU, Sjovall J, Matern S. Stimulation of bile acid 6 alpha-hydroxylation by rifampin. J Hepatol. 1996;24:713–8.

    CAS  PubMed  Google Scholar 

  41. Wietholtz H, Marschall HU, Sjovall J, Matern S. Stimulation of bile acid 6 alpha-hydroxylation by rifampin. J Hepatol. 1996;24:713–8.

    CAS  PubMed  Google Scholar 

  42. Kim SW, Hasanuzzaman M, Cho M, Heo YR, Ryu MJ, Ha NY, et al. Casein kinase 2 (CK2)-mediated phosphorylation of Hsp90beta as a novel mechanism of rifampin-induced MDR1 expression. J Biol Chem. 2015;290:17029–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Hasanuzzaman M, Yi M, Cho M, Parvez MM, Lee SJ, Shin JG. Rifampin induces expression of P-glycoprotein on the THP1 cell- derived macrophages, causing decrease intramacrophage concentration of prothionamide. J Pharm Sci. 2019;108:3106–11.

    CAS  PubMed  Google Scholar 

  44. Lam P, Wang R, Ling V. Bile acid transport in sister of P-glycoprotein (ABCB11) knockout mice. Biochemistry. 2005;44:12598–605.

    CAS  PubMed  Google Scholar 

  45. Balsells F, Wyllie R, Steffen R, Kay M. Benign recurrent intrahepatic cholestasis: improvement of pruritus and shortening of the symptomatic phase with rifampin therapy: a case report. Clin Pediatr (Phila). 1997;36:483–5.

    CAS  Google Scholar 

  46. Cancado EL, Leitao RM, Carrilho FJ, Laudanna AA. Unexpected clinical remission of cholestasis after rifampicin therapy in patients with normal or slightly increased levels of gamma-glutamyl transpeptidase. Am J Gastroenterol. 1998;93:1510–7.

    CAS  PubMed  Google Scholar 

  47. Ermis F, Oncu K, Ozel M, Yazgan Y, Gurbuz AK, Demirturk L, et al. Benign recurrent intrahepatic cholestasis: late initial diagnosis in adulthood. Ann Hepatol. 2010;9:207–10.

    PubMed  Google Scholar 

  48. Kumagi T, Heathcote EJ. Successfully treated intractable pruritus with rifampin in a case of benign recurrent intrahepatic cholestasis. Clin J Gastroenterol. 2008;1:160–63.

    PubMed  Google Scholar 

  49. Mizuochi T, Kimura A, Tanaka A, Muto A, Nittono H, Seki Y, et al. Characterization of urinary bile acids in a pediatric BRIC-1 patient: effect of rifampicin treatment. Clin Chim Acta. 2012;413:1301–4.

    CAS  PubMed  Google Scholar 

  50. Salyani A, Barasa L, Rajula A, Ali SK. Benign recurrent intrahepatic cholestasis (BRIC): an African case report. Case Rep Gastrointest Med. 2020;2020:2894293.

    PubMed  PubMed Central  Google Scholar 

  51. Engelmann G, Wenning D, Herebian D, Sander O, Droge C, Kluge S, et al. Two case reports of successful treatment of cholestasis with steroids in patients with PFIC-2. Pediatrics. 2015;135:e1326–32.

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank the study families for their enthusiastic participation.

Funding

The authors extend their appreciation to the Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number 821.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sami Wali or Naif A. M. Almontashiri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alhebbi, H., Peer-Zada, A.A., Al‐Hussaini, A.A. et al. New paradigms of USP53 disease: normal GGT cholestasis, BRIC, cholangiopathy, and responsiveness to rifampicin. J Hum Genet 66, 151–159 (2021). https://doi.org/10.1038/s10038-020-0811-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s10038-020-0811-1

This article is cited by

Search

Quick links