Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Identification of a deep intronic POLR3A variant causing inclusion of a pseudoexon derived from an Alu element in Pol III-related leukodystrophy

Abstract

Pseudoexon inclusion caused by deep intronic variants is an important genetic cause for various disorders. Here, we present a case of a hypomyelinating leukodystrophy with developmental delay, intellectual disability, autism spectrum disorder, and hypodontia, which are consistent with autosomal recessive POLR3-related leukodystrophy. Whole-exome sequencing identified only a heterozygous missense variant (c.1451G>A) in POLR3A. To explore possible involvement of a deep intronic variant in another allele, we performed whole-genome sequencing of the patient with variant annotation by SpliceAI, a deep-learning-based splicing prediction tool. A deep intronic variant (c.645 + 312C>T) in POLR3A, which was predicted to cause inclusion of a pseudoexon derived from an Alu element, was identified and confirmed by mRNA analysis. These results clearly showed that whole-genome sequencing, in combination with deep-learning-based annotation tools such as SpliceAI, will bring us further benefits in detecting and evaluating possible pathogenic variants in deep intronic regions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

References

  1. Schwarze K, Buchanan J, Taylor JC, Wordsworth S. Are whole-exome and whole-genome sequencing approaches cost-effective? A systematic review of the literature. Genet Med. 2018;20:1122–30.

    Article  Google Scholar 

  2. Vaz-Drago R, Custódio N, Carmo-Fonseca M. Deep intronic mutations and human disease. Hum Genet. 2017;136:1093–111.

    Article  CAS  Google Scholar 

  3. Jian X, Boerwinkle E, Liu X. In silico tools for splicing defect prediction: a survey from the viewpoint of end users. Genet Med. 2014;16:497–503.

    Article  CAS  Google Scholar 

  4. Jaganathan K, Kyriazopoulou Panagiotopoulou S, McRae JF, Darbandi SF, Knowles D, Li YI, et al. Predicting splicing from primary sequence with deep learning. Cell. 2019;176:535–48.e24.

    Article  CAS  Google Scholar 

  5. Bernard G, Vanderver A. POLR3-related leukodystrophy. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, et al. editors. GeneReviews®. Seattle, WA: University of Washington. 2012. https://www.ncbi.nlm.nih.gov/books/NBK99167/. 1993–2019, updated 2017 May 11.

  6. Miyamoto S, Nakashima M, Ohashi T, Hiraide T, Kurosawa K, Yamamoto T, et al. A case of de novo splice site variant in SLC35A2 showing developmental delays, spastic paraplegia, and delayed myelination. Mol Genet Genom Med. 2019;7:e814.

    Google Scholar 

  7. Tadaka S, Katsuoka F, Ueki M, Kojima K, Makino S, Saito S, et al. 3.5KJPNv2: an allele frequency panel of 3552 Japanese individuals including the X chromosome. Hum Genome Var. 2019;6:28.

    Article  Google Scholar 

  8. Lowell JL, Klein DA. Heteroduplex resolution using T7 endonuclease I in microbial community analyses. Biotechniques. 2000;28:676–8.

    Article  CAS  Google Scholar 

  9. Potapov V, Ong JL. Examining sources of error in PCR by single-molecule sequencing. PLoS ONE. 2017;12:e0169774.

    Article  CAS  Google Scholar 

  10. Zou J, Huss M, Abid A, Mohammadi P, Torkamani A, Telenti A. A primer on deep learning in genomics. Nat Genet. 2019;51:12–18.

    Article  CAS  Google Scholar 

  11. Wai HA, Lord J, Lyon M, Gunning A, Kelly H, Cibin P, et al. Blood RNA analysis can increase clinical diagnostic rate and resolve variants of uncertain significance. Genet Med. 2020. https://doi.org/10.1038/s41436-020-0766-9.

  12. Keren H, Lev-Maor G, Ast G. Alternative splicing and evolution: diversification, exon definition and function. Nat Rev Genet. 2010;11:345–55.

    Article  CAS  Google Scholar 

  13. Lev-Maor G, Sorek R, Shomron N, Ast G. The birth of an alternatively spliced exon: 3’ splice-site selection in Alu exons. Science. 2003;300:1288–91.

    Article  CAS  Google Scholar 

  14. Ram O, Schwartz S, Ast G. Multifactorial interplay controls the splicing profile of Alu-derived exons. Mol Cell Biol. 2008;28:3513–25.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the patient’s family for participating in this work. This work was supported by Grant‐in‐Aid from the Ministry of Health, Labour and Welfare of Japan; the Takeda Science Foundation, and a HUSM Grant-in-Aid from Hamamatsu University School of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirotomo Saitsu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hiraide, T., Nakashima, M., Ikeda, T. et al. Identification of a deep intronic POLR3A variant causing inclusion of a pseudoexon derived from an Alu element in Pol III-related leukodystrophy. J Hum Genet 65, 921–925 (2020). https://doi.org/10.1038/s10038-020-0786-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s10038-020-0786-y

This article is cited by

Search

Quick links