Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Postzygotic inactivating mutation of KIF13A located at chromosome 6p22.3 in a patient with a novel mosaic neuroectodermal syndrome

Abstract

Hypomelanosis of Ito (HMI) is part of a neuroectodermal syndrome characterized by distinctive skin manifestations with or without multisystemic involvements. In our undiagnosed diseases program, we have encountered a 3-year-old girl presenting with characteristic skin hypopigmentation suggesting HMI and developmental delay. An exome and genome approach utilizing next-generation sequencing revealed a heterozygous de novo frameshift variant in the KIF13A gene, i.e., NM_022113.6: c.2357dupA, resulting in nonsense-mediated decay. The low mutant allelic ratio suggested that the mutation has occurred postzygotically leading to embryonic mosaicism. Functionally, K1F3A regulates cell membrane blebbing and migration of neural crest cells by controlling recycling of RHOB to the plasma membrane and is also involved in melanosome biogenesis. Importantly, hypopigmentation of the skin has been reported in chr 6p22.3-p23 microdeletion syndrome supporting the association of KIF13A haploinsufficiency with the novel neuroectodermal syndrome. With the increased availability of genome sequencing, we envisage more genetic causes of HMI will be identified in the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

References

  1. Donnai D, Read AP, McKeown C, Andrews T. Hypomelanosis of Ito: a manifestation of mosaicism or chimerism. J Med Genet. 1988;25:809–18.

    Article  CAS  Google Scholar 

  2. Happle R. Lyonization and the lines of Blaschko. Hum Genet. 1985;70:200–6.

    Article  CAS  Google Scholar 

  3. Pascual-Castroviejo I, Lopez-Rodriguez L, de la Cruz Medina M, Salamanca-Maesso C, Roche Herrero C. Hypomelanosis of Ito. Neurological complications in 34 cases. Can J Neurol Sci. 1988;15:124–9.

    Article  CAS  Google Scholar 

  4. Yigit G, Saida K, DeMarzo D, Miyake N, Fujita A, Yang Tan T, et al. The recurrent postzygotic pathogenic variant p.Glu47Lys in RHOA causes a novel recognizable neuroectodermal phenotype. Hum Mutat. 2020;41:591–9.

    Article  CAS  Google Scholar 

  5. Vabres P, Sorlin A, Kholmanskikh SS, Demeer B, St-Onge J, Duffourd Y, et al. Postzygotic inactivating mutations of RHOA cause a mosaic neuroectodermal syndrome. Nat Genet. 2019;51:1438–41.

    Article  CAS  Google Scholar 

  6. Glover MT, Brett EM, Atherton DJ. Hypomelanosis of Ito: spectrum of the disease. J Pediatr. 1989;115:75–80.

    Article  CAS  Google Scholar 

  7. Sybert VP, Pagon RA, Donlan M, Bradley CM. Pigmentary abnormalities and mosaicism for chromosomal aberration: association with clinical features similar to hypomelanosis of Ito. J Pediatr. 1990;116:581–6.

    Article  CAS  Google Scholar 

  8. Kromann AB, Ousager LB, Ali IKM, Aydemir N, Bygum A. Pigmentary mosaicism: a review of original literature and recommendations for future handling. Orphanet J Rare Dis. 2018;13:39.

    Article  Google Scholar 

  9. Ross DL, Liwnicz BH, Chun RW, Gilbert E. Hypomelanosis of Ito (incontinentia pigmenti achromians)-a clinicopathologic study: macrocephaly and gray matter heterotopias. Neurology. 1982;32:1013–6.

    Article  CAS  Google Scholar 

  10. Fujino O, Hashimoto K, Fujita T, Enokido H, Komatsuzaki H, Asano G, et al. Clinico-neuropathological study of incontinentia pigmenti achromians-an autopsy case. Brain Dev. 1995;17:425–7.

    Article  CAS  Google Scholar 

  11. Lam CW, Yeung WL, Law CY. Global developmental delay and intellectual disability associated with a de novo TOP2B mutation. Clin Chim Acta. 2017;469:63–8.

    Article  CAS  Google Scholar 

  12. Soppina V, Norris SR, Dizaji AS, Kortus M, Veatch S, Peckham M, et al. Dimerization of mammalian kinesin-3 motors results in superprocessive motion. Proc Natl Acad Sci USA. 2014;111:5562–7.

    Article  CAS  Google Scholar 

  13. Nakagawa T, Setou M, Seog D, Ogasawara K, Dohmae N, Takio K, et al. A novel motor, KIF13A, transports mannose-6-phosphate receptor to plasma membrane through direct interaction with AP-1 complex. Cell. 2000;103:569–81.

    Article  CAS  Google Scholar 

  14. Sagona AP, Nezis IP, Pedersen NM, Liestol K, Poulton J, Rusten TE, et al. PtdIns(3)P controls cytokinesis through KIF13A-mediated recruitment of FYVE-CENT to the midbody. Nat Cell Biol. 2010;12:362–71.

    Article  CAS  Google Scholar 

  15. Gong X, Didan Y, Lock JG, Stromblad S. KIF13A-regulated RhoB plasma membrane localization governs membrane blebbing and blebby amoeboid cell migration. EMBO J. 2018;37:e98994.

    PubMed  PubMed Central  Google Scholar 

  16. Delevoye C, Hurbain I, Tenza D, Sibarita JB, Uzan-Gafsou S, Ohno H, et al. AP-1 and KIF13A coordinate endosomal sorting and positioning during melanosome biogenesis. J Cell Biol. 2009;187:247–64.

    Article  CAS  Google Scholar 

  17. Zhou R, Niwa S, Guillaud L, Tong Y, Hirokawa N. A molecular motor, KIF13A, controls anxiety by transporting the serotonin type 1A receptor. Cell Rep. 2013;3:509–19.

    Article  CAS  Google Scholar 

  18. Coban-Akdemir Z, White JJ, Song X, Jhangiani SN, Fatih JM, Gambin T, et al. Identifying genes whose mutant transcripts cause dominant disease traits by potential gain-of-function alleles. Am J Hum Genet. 2018;103:171–87.

    Article  CAS  Google Scholar 

  19. Celestino-Soper PB, Skinner C, Schroer R, Eng P, Shenai J, Nowaczyk MM, et al. Deletions in chromosome 6p22.3-p24.3, including ATXN1, are associated with developmental delay and autism spectrum disorders. Mol Cytogenet. 2012;5:17.

    Article  CAS  Google Scholar 

  20. Thomas S, Thomas M, Wincker P, Babarit C, Xu P, Speer MC, et al. Human neural crest cells display molecular and phenotypic hallmarks of stem cells. Hum Mol Genet. 2008;17:3411–25.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Wan Lam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lam, CW., Chan, C.Y., Wong, KC. et al. Postzygotic inactivating mutation of KIF13A located at chromosome 6p22.3 in a patient with a novel mosaic neuroectodermal syndrome. J Hum Genet 66, 825–829 (2021). https://doi.org/10.1038/s10038-020-00883-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s10038-020-00883-w

This article is cited by

Search

Quick links