A distinct neurodevelopmental syndrome with intellectual disability, autism spectrum disorder, characteristic facies, and macrocephaly is caused by defects in CHD8

Abstract

A decade ago, we described novel de novo submicroscopic deletions of chromosome 14q11.2 in three children with developmental delay, cognitive impairment, and similar dysmorphic features, including widely-spaced eyes, short nose with flat nasal bridge, long philtrum, prominent Cupid’s bow of the upper lip, full lower lip, and auricular anomalies. We suggested that this constituted a new multiple congenital anomaly—intellectual disability syndrome due to defects in CHD8 and/or SUPT16H. The three patients in our original cohort were between 2 years and 3 years of age at the time. Here we present a fourth patient and clinical updates on our previous patients. To document the longitudinal course more fully, we integrate published reports of other patients and describe genotype–phenotype correlations among them. Children with the disorder present with developmental delay, intellectual disability, and/or autism spectrum disorder in addition to characteristic facies. Gastrointestinal and sleep problems are notable. The identification of multiple patients with the same genetic defect and characteristic clinical phenotype, confirms our suggestion that this is a syndromic disorder caused by haploinsufficiency or heterozygous loss of function of CHD8.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Zahir F, Firth HV, Baross A, Delaney AD, Eydoux P, Gibson WT, et al. Novel deletions of 14q11.2 associated with developmental delay, cognitive impairment and similar minor anomalies in three children. J Med Genet. 2007;44:556–61.

  2. 2.

    Prontera P, Ottaviani V, Toccaceli D, Rogaia D, Ardisia C, Romani R, et al. Recurrent approximately 100 Kb microdeletion in the chromosomal region 14q11.2, involving CHD8 gene, is associated with autism and macrocephaly. Am J Med Genet A. 2014;164A:3137–41.

  3. 3.

    Drabova J, Seemanova E, Hancarova M, Pourova R, Horacek M, Jancuskova T, et al. Long term follow-up in a patient with a de novo microdeletion of 14q11.2 involving CHD8. Am J Med Genet A. 2015;167:837–41.

  4. 4.

    Merner N, Forgeot d’Arc B, Bell SC, Maussion G, Peng H, Gauthier J, et al. A de novo frameshift mutation in chromodomain helicase DNA-binding domain 8 (CHD8): a case report and literature review. Am J Med Genet A. 2016;170A:1225–35.

  5. 5.

    Stolerman ES, Smith B, Chaubey A, Jones JR. CHD8 intragenic deletion associated with autism spectrum disorder. Eur J Med Genet. 2016;59:189–94.

  6. 6.

    Bernier R, Golzio C, Xiong B, Stessman HA, Coe BP, Penn O, et al. Disruptive CHD8 mutations define a subtype of autism early in development. Cell . 2014;158:263–76.

  7. 7.

    O’Roak BJ, Vives L, Fu W, Egertson JD, Stanaway IB, Phelps IG, et al. Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science. 2012;338:1619–22.

  8. 8.

    O’Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP, et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature. 2012;485:246–50.

  9. 9.

    Tucker T, Zahir FR, Griffith M, Delaney A, Chai D, Tsang E, et al. Single exon-resolution targeted chromosomal microarray analysis of known and candidate intellectual disability genes. Eur J Hum Genet. 2014;22:792–800.

  10. 10.

    Sagee (Natural Product Number 80031803) [Internet]. Health Canada. 2016 [cited 23 Apr 2017]. Available from: https://health-products.canada.ca/lnhpd-bdpsnh/search-recherche.do;jsessionid=0AF7AC4540CF9F9F9015CADDC894644D.

  11. 11.

    Zheng Q, Zhan G, Tang C, Bi X, Zhao W, Zou X. A novel CHD8 gene mutation in a patient with autism spectrum disorder and literature review. Chin J Evid Based Pediatr. 2015;10:216–21.

  12. 12.

    Smyk M, Poluha A, Jaszczuk I, Bartnik M, Bernaciak J, Nowakowska B. Novel 14q11.2 microduplication including the CHD8 and SUPT16H genes associated with developmental delay. Am J Med Genet A. 2016;170A:1325–9.

  13. 13.

    Terrone G, Cappuccio G, Genesio R, Esposito A, Fiorentino V, Riccitelli M, et al. A case of 14q11.2 microdeletion with autistic features, severe obesity and facial dysmorphisms suggestive of Wolf-Hirschhorn syndrome. Am J Med Genet A. 2014;164A:190–3.

  14. 14.

    Kimura H, Wang C, Ishizuka K, Xing J, Takasaki Y, Kushima I, et al. Identification of a rare variant in CHD8 that contributes to schizophrenia and autism spectrum disorder susceptibility. Schizophr Res. 2016;178:104–6.

  15. 15.

    Barnard RA, Pomaville MB, O’Roak BJ. Mutations and modeling of the chromatin remodeler CHD8 define an emerging autism etiology. Front Neurosci. 2015;9:477.

  16. 16.

    Katayama Y, Nishiyama M, Shoji H, Ohkawa Y, Kawamura A, Sato T, et al. CHD8 haploinsufficiency results in autistic-like phenotypes in mice. Nature. 2016;537:675–9.

  17. 17.

    Platt RJ, Zhou Y, Slaymaker IM, Shetty AS, Weisbach NR, Kim JA, et al. Chd8 mutation leads to autistic-like behaviors and impaired striatal circuits. Cell Rep. 2017;19:335–50.

  18. 18.

    Sawada G, Ueo H, Matsumura T, Uchi R, Ishibashi M, Mima K, et al. CHD8 is an independent prognostic indicator that regulates Wnt/beta-catenin signaling and the cell cycle in gastric cancer. Oncol Rep. 2013;30:1137–42.

  19. 19.

    Damaschke NA, Yang B, Blute ML Jr., Lin CP, Huang W, Jarrard DF. Frequent disruption of chromodomain helicase DNA-binding protein 8 (CHD8) and functionally associated chromatin regulators in prostate cancer. Neoplasia . 2014;16:1018–27.

  20. 20.

    Jones DH, Lin DI. Amplification of the NSD3-BRD4-CHD8 pathway in pelvic high-grade serous carcinomas of tubo-ovarian and endometrial origin. Mol Clin Oncol. 2017;7:301–7.

  21. 21.

    Tatton-Brown K, Loveday C, Yost S, Clarke M, Ramsay E, Zachariou A, et al. Mutations in epigenetic regulation genes are a major cause of overgrowth with intellectual disability. Am J Hum Genet. 2017;100:725–36.

  22. 22.

    Maluchenko NV, Chang HW, Kozinova MT, Valieva ME, Gerasimova NS, Kitashov AV, et al. [Inhibiting the pro-tumor and transcription factor FACT: mechanisms]. Mol Biol (Mosk). 2016;50:599–610.

  23. 23.

    Belotserkovskaya R, Reinberg D. Facts about FACT and transcript elongation through chromatin. Curr Opin Genet Dev. 2004;14:139–46.

  24. 24.

    Bondarenko VA, Steele LM, Ujvari A, Gaykalova DA, Kulaeva OI, Polikanov YS, et al. Nucleosomes can form a polar barrier to transcript elongation by RNA polymerase II. Mol Cell. 2006;24:469–79.

  25. 25.

    Jeronimo C, Watanabe S, Kaplan CD, Peterson CL, Robert F. The histone chaperones FACT and Spt6 restrict H2A.Z from intragenic locations. Mol Cell. 2015;58:1113–23.

  26. 26.

    Rodriguez-Paredes M, Ceballos-Chavez M, Esteller M, Garcia-Dominguez M, Reyes JC. The chromatin remodeling factor CHD8 interacts with elongating RNA polymerase II and controls expression of the cyclin E2 gene. Nucleic Acids Res. 2009;37:2449–60.

  27. 27.

    Sugathan A, Biagioli M, Golzio C, Erdin S, Blumenthal I, Manavalan P, et al. CHD8 regulates neurodevelopmental pathways associated with autism spectrum disorder in neural progenitors. Proc Natl Acad Sci USA. 2014;111:E4468–77.

  28. 28.

    Wang P, Lin M, Pedrosa E, Hrabovsky A, Zhang Z, Guo W, et al. CRISPR/Cas9-mediated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks in neurodevelopment. Mol Autism. 2015;6:55.

  29. 29.

    Jergil M, Forsberg M, Salter H, Stockling K, Gustafson AL, Dencker L, et al. Short-time gene expression response to valproic acid and valproic acid analogs in mouse embryonic stem cells. Toxicol Sci. 2011;121:328–42.

  30. 30.

    Ishihara K, Oshimura M, Nakao M. CTCF-dependent chromatin insulator is linked to epigenetic remodeling. Mol Cell. 2006;23:733–42.

  31. 31.

    Sarkar S, Davies JE, Huang Z, Tunnacliffe A, Rubinsztein DC. Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein. J Biol Chem. 2007;282:5641–52.

  32. 32.

    Tang L, Yue B, Cheng Y, Yao H, Ma X, Tian Q, et al. Inhibition of invasion and metastasis by DMBT, a novel trehalose derivative, through Akt/GSK-3beta/beta-catenin pathway in B16BL6 cells. Chem Biol Interact. 2014;222:7–17.

  33. 33.

    Nishiyama M, Skoultchi AI, Nakayama KI. Histone H1 recruitment by CHD8 is essential for suppression of the Wnt-beta-catenin signaling pathway. Mol Cell Biol. 2012;32:501–12.

  34. 34.

    Davis AP, Grondin CJ, Johnson RJ, Sciaky D, King BL, McMorran R, et al. The Comparative Toxicogenomics Database: update 2017. Nucleic Acids Res. 2017;45(D1):D972–8.

  35. 35.

    Danforth AL, Struble CM, Yazar-Klosinski B, Grob CS. MDMA-assisted therapy: a new treatment model for social anxiety in autistic adults. Prog Neuropsychopharmacol Biol Psychiatry. 2016;64:237–49.

Download references

Acknowledgements

Our special thanks to the families who readily provided updated photographs and video and who have been involved participants all along.

Funding

FRZ was supported by a CIHR Post-Doctoral Scholarship, NeuroDevNet post-fellowship, and UBC BlumaTischler fellowship. WTG is supported by a BCCHR Intramural IGAP award and by Canadian Institutes of Health Research (CIHR) Grant PJT-148830. This work was supported by funds from the CIHR grant MOP-102600.

Author information

Correspondence to Farah R. Zahir.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yasin, H., Gibson, W.T., Langlois, S. et al. A distinct neurodevelopmental syndrome with intellectual disability, autism spectrum disorder, characteristic facies, and macrocephaly is caused by defects in CHD8. J Hum Genet 64, 271–280 (2019). https://doi.org/10.1038/s10038-019-0561-0

Download citation

Further reading

  • Multiple drugs

    Reactions Weekly (2019)

  • Epigenetic signatures in overgrowth syndromes: Translational opportunities

    • Cheryl Cytrynbaum
    • , Sanaa Choufani
    •  & Rosanna Weksberg

    American Journal of Medical Genetics Part C: Seminars in Medical Genetics (2019)

  • The CHD8 overgrowth syndrome: A detailed evaluation of an emerging overgrowth phenotype in 27 patients

    • Philip J. Ostrowski
    • , Anna Zachariou
    • , Chey Loveday
    • , Ana Beleza‐Meireles
    • , Marta Bertoli
    • , John Dean
    • , Andrew G. L. Douglas
    • , Ian Ellis
    • , Alison Foster
    • , John M. Graham
    • , Jennifer Hague
    • , Yvonne Hilhorst‐Hofstee
    • , Mariette Hoffer
    • , Diana Johnson
    • , Dragana Josifova
    • , Sarina G. Kant
    • , Usha Kini
    • , Katherine Lachlan
    • , Wayne Lam
    • , Melissa Lees
    • , Sally Lynch
    • , Silvia Maitz
    • , Shane McKee
    • , Kay Metcalfe
    • , Katherine Nathanson
    • , Charlotte W. Ockeloen
    • , Michael J. Parker
    • , Tyler M. Pierson
    • , Elisa Rahikkala
    • , Pedro A. Sanchez‐Lara
    • , Alice Spano
    • , Lionel Van Maldergem
    • , Trevor Cole
    • , Sofia Douzgou
    •  & Katrina Tatton‐Brown

    American Journal of Medical Genetics Part C: Seminars in Medical Genetics (2019)

  • The clinical presentation caused by truncating CHD8 variants

    • Sofia Douzgou
    • , Hui Wen Liang
    • , Kay Metcalfe
    • , Suresh Somarathi
    • , Marc Tischkowitz
    • , Wafik Mohamed
    • , Usha Kini
    • , Shane McKee
    • , Laura Yates
    • , Marta Bertoli
    • , Sally Ann Lynch
    • , Susan Holder
    •  & Siddharth Banka

    Clinical Genetics (2019)