Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Recent advances in understanding beta-ketothiolase (mitochondrial acetoacetyl-CoA thiolase, T2) deficiency

Abstract

Beta-ketothiolase (mitochondrial acetoacetyl-CoA thiolase, T2) deficiency (OMIM #203750, *607809) is an inborn error of metabolism that affects isoleucine catabolism and ketone body metabolism. This disorder is clinically characterized by intermittent ketoacidotic crises under ketogenic stresses. In addition to a previous 26-case series, four series of T2-deficient patients were recently reported from different regions. In these series, most T2-deficient patients developed their first ketoacidotic crises between the ages of 6 months and 3 years. Most patients experienced less than three metabolic crises. Newborn screening (NBS) for T2 deficiency is performed in some countries but some T2-deficient patients have been missed by NBS. Therefore, T2 deficiency should be considered in patients with severe metabolic acidosis, even in regions where NBS for T2 deficiency is performed. Neurological manifestations, especially extrapyramidal manifestations, can occur as sequelae to severe metabolic acidosis; however, this can also occur in patients without any apparent metabolic crisis or before the onset of metabolic crisis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Daum RS, Lamm PH, Mamer OA, Scriver CRA. “new” disorder of isoleucine catabolism. Lancet. 1971;2:1289–90.

    CAS  Article  Google Scholar 

  2. 2.

    Daum RS, Scriver CR, Mamer OA, Delvin E, Lamm P, Goldman H. An inherited disorder of isoleucine catabolism causing accumulation of alpha-methylacetoacetate and alpha-methyl-beta -hydroxybutyrate, and intermittent metabolic acidosis. Pediatr Res. 1973;7:149–60.

    CAS  Article  Google Scholar 

  3. 3.

    Fukao T, Maruyama S, Ohura T, Hasegawa Y, Toyoshima M, Haapalainen AM, et al. Three Japanese patients with beta-ketothiolase deficiency who share a mutation, c.431A>C (H144P) in ACAT1: subtle abnormality in urinary organic acid analysis and blood acylcarnitine analysis using tandem mass spectrometry. JIMD Rep. 2012;3:107–15.

    Article  Google Scholar 

  4. 4.

    Yamaguchi S, Orii T, Sakura N, Miyazawa S, Hashimoto T. Defect in biosynthesis of mitochondrial acetoacetyl-coenzyme A thiolase in cultured fibroblasts from a boy with 3-ketothiolase deficiency. J Clin Invest. 1988;81:813–7.

    CAS  Article  Google Scholar 

  5. 5.

    Mitchell GA, Fukao T. Inborn errors of ketone body metabolism. In: Scriver CR, Beaudet AL, Sly WS & Valle D, editors. The metabolic & molecular basis of inherited disease. Vol. 2, Ch. 102 New York: McGraw-Hill; 2001. p. 2327–56.

  6. 6.

    Fukao T, Mitchell G, Sass JO, Hori T, Orii K, Aoyama Y. Ketone body metabolism and its defects. J Inherit Metab Dis. 2014;37:541–51.

    CAS  Article  Google Scholar 

  7. 7.

    Abdelkreem E, Otsuka H, Sasai H, Aoyama Y, Hori T, Abd El Aal M, et al. Beta-ketothiolase deficiency: resolving challenges in diagnosis. J Inborn Errors Metab Screen. 2016;4:1–9.

    CAS  Article  Google Scholar 

  8. 8.

    Fukao T, Yamaguchi S, Nagasawa H, Kano M, Orii T, Fujiki Y, et al. Molecular cloning of cDNA for human mitochondrial acetoacetyl-CoA thiolase and molecular analysis of 3-ketothiolase deficiency. J Inherit Metab Dis. 1990;13:757–60.

    CAS  Article  Google Scholar 

  9. 9.

    Fukao T, Yamaguchi S, Tomatsu S, Orii T, Frauendienst-Egger G, Schrod L, et al. Evidence for a structural mutation (347Ala to Thr) in a German family with 3-ketothiolase deficiency. Biochem Biophys Res Commun. 1991;179:124–9.

    CAS  Article  Google Scholar 

  10. 10.

    Kano M, Fukao T, Yamaguchi S, Orii T, Osumi T, Hashimoto T. Structure and expression of the human mitochondrial acetoacetyl-CoA thiolase-encoding gene. Gene. 1991;109:285–90.

    CAS  Article  Google Scholar 

  11. 11.

    Fukao T, Yamaguchi S, Orii T, Osumi T, Hashimoto T. Molecular basis of 3-ketothiolase deficiency: identification of an AG to AC substitution at the splice acceptor site of intron 10 causing exon 11 skipping. Biochim Biophys Acta. 1992;1139:184–8.

    CAS  Article  Google Scholar 

  12. 12.

    Fukao T, Yamaguchi S, Wakazono A, Okamoto H, Orii T, Osumi T, et al. Molecular basis of 3-ketothiolase deficiency: detection of gene mutations and expression of mutant cDNAs of mitochondrial acetoacetyl-CoA thiolase. J Inherit Metab Dis. 1992;15:815–20.

    CAS  Article  Google Scholar 

  13. 13.

    Wajner M, Sanseverino MT, Giugliani R, Sweetman L, Yamaguchi S, Fukao T, et al. Biochemical investigation of a Brazilian patient with a defect in mitochondrial acetoacetylcoenzyme-A thiolase. Clin Genet. 1992;41:202–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Masuno M, Kano M, Fukao T, Yamaguchi S, Osumi T, Hashimoto T, et al. Chromosome mapping of the human mitochondrial acetoacetyl-coenzyme A thiolase gene to 11q22.3----q23.1 by fluorescence in situ hybridization. Cytogenet Cell Genet. 1992;60:121–2.

    CAS  Article  Google Scholar 

  15. 15.

    Fukao T, Yamaguchi S, Orii T, Schutgens RB, Osumi T, Hashimoto T. Identification of three mutant alleles of the gene for mitochondrial acetoacetyl-coenzyme A thiolase. A complete analysis of two generations of a family with 3-ketothiolase deficiency. J Clin Invest. 1992;89:474–9.

    CAS  Article  Google Scholar 

  16. 16.

    Fukao T, Yamaguchi S, Scriver CR, Dunbar G, Wakazono A, Kano M, et al. Molecular studies of mitochondrial acetoacetyl-coenzyme A thiolase deficiency in the two original families. Hum Mutat. 1993;2:214–20.

    CAS  Article  Google Scholar 

  17. 17.

    Fukao T, Yamaguchi S, Wakazono A, Orii T, Hoganson G, Hashimoto T. Identification of a novel exonic mutation at -13 from 5’ splice site causing exon skipping in a girl with mitochondrial acetoacetyl-coenzyme A thiolase deficiency. J Clin Invest. 1994;93:1035–41.

    CAS  Article  Google Scholar 

  18. 18.

    Fukao T, Song XQ, Yamaguchi S, Orii T, Wanders RJ, Poll-The BT, et al. Mitochondrial acetoacetyl-coenzyme A thiolase gene: a novel 68-bp deletion involving 3’ splice site of intron 7, causing exon 8 skipping in a Caucasian patient with beta-ketothiolase deficiency. Hum Mutat. 1995;5:94–96.

    CAS  Article  Google Scholar 

  19. 19.

    Fukao T, Kodama A, Aoyanagi N, Tsukino R, Uemura S, Song XQ, et al. Mild form of beta-ketothiolase deficiency (mitochondrial acetoacetyl-CoA thiolase deficiency) in two Japanese siblings: identification of detectable residual activity and cross-reactive material in EB-transformed lymphocytes. Clin Genet. 1996;50:263–6.

    CAS  Article  Google Scholar 

  20. 20.

    Fukao T, Song XQ, Yamaguchi S, Kondo N, Orii T, Matthieu JM, et al. Identification of three novel frameshift mutations (83delAT, 754insCT, and 435+1G to A) of mitochondrial acetoacetyl-coenzyme A thiolase gene in two Swiss patients with CRM-negative beta-ketothiolase deficiency. Hum Mutat. 1997;9:277–9.

    CAS  Article  Google Scholar 

  21. 21.

    Wakazono A, Fukao T, Yamaguchi S, Hori T, Orii T, Lambert M, et al. Molecular, biochemical, and clinical characterization of mitochondrial acetoacetyl-coenzyme A thiolase deficiency in two further patients. Hum Mutat. 1995;5:34–42.

    CAS  Article  Google Scholar 

  22. 22.

    Fukao T, Nakamura H, Song XQ, Nakamura K, Orii KE, Kohno Y, et al. Characterization of N93S, I312T, and A333P missense mutations in two Japanese families with mitochondrial acetoacetyl-CoA thiolase deficiency. Hum Mutat. 1998;12:245–54.

    CAS  Article  Google Scholar 

  23. 23.

    Sewell AC, Herwig J, Wiegratz I, Lehnert W, Niederhoff H, Song XQ, et al. Mitochondrial acetoacetyl-CoA thiolase (beta-ketothiolase) deficiency and pregnancy. J Inherit Metab Dis. 1998;21:441–2.

    CAS  Article  Google Scholar 

  24. 24.

    Nakamura K, Fukao T, Perez-Cerda C, Luque C, Song XQ, Naiki Y, et al. A novel single-base substitution (380C>T) that activates a 5-base downstream cryptic splice-acceptor site within exon 5 in almost all transcripts in the human mitochondrial acetoacetyl-CoA thiolase gene. Mol Genet Metab. 2001;72:115–21.

    CAS  Article  Google Scholar 

  25. 25.

    Fukao T, Scriver CR, Kondo N. The clinical phenotype and outcome of mitochondrial acetoacetyl-CoA thiolase deficiency (beta-ketothiolase or T2 deficiency) in 26 enzymatically proved and mutation-defined patients. Mol Genet Metab. 2001;72:109–14.

    CAS  Article  Google Scholar 

  26. 26.

    Fukao T, Nakamura H, Nakamura K, Perez-Cerda C, Baldellou A, Barrionuevo CR, et al. Characterization of six mutations in five Spanish patients with mitochondrial acetoacetyl-CoA thiolase deficiency: effects of amino acid substitutions on tertiary structure. Mol Genet Metab. 2002;75:235–43.

    CAS  Article  Google Scholar 

  27. 27.

    Fukao T, Matsuo N, Zhang GX, Urasawa R, Kubo T, Kohno Y, et al. Single base substitutions at the initiator codon in the mitochondrial acetoacetyl-CoA thiolase (ACAT1/T2) gene result in production of varying amounts of wild-type T2 polypeptide. Hum Mutat. 2003;21:587–92.

    CAS  Article  Google Scholar 

  28. 28.

    Fukao T, Zhang GX, Sakura N, Kubo T, Yamaga H, Hazama A, et al. The mitochondrial acetoacetyl-CoA thiolase (T2) deficiency in Japanese patients: urinary organic acid and blood acylcarnitine profiles under stable conditions have subtle abnormalities in T2-deficient patients with some residual T2 activity. J Inherit Metab Dis. 2003;26:423–31.

    CAS  Article  Google Scholar 

  29. 29.

    Zhang GX, Fukao T, Rolland MO, Zabot MT, Renom G, Touma E, et al. Mitochondrial acetoacetyl-CoA thiolase (T2) deficiency: T2-deficient patients with “mild” mutation(s) were previously misinterpreted as normal by the coupled assay with tiglyl-CoA. Pediatr Res. 2004;56:60–64.

    CAS  Article  Google Scholar 

  30. 30.

    Mrazova L, Fukao T, Halovd K, Gregova E, Kohut V, Pribyl D, et al. Two novel mutations in mitochondrial acetoacetyl-CoA thiolase deficiency. J Inherit Metab Dis. 2005;28:235–6.

    CAS  Article  Google Scholar 

  31. 31.

    Zhang G, Fukao T, Sakurai S, Yamada K, Michael Gibson K, Kondo N. Identification of Alu-mediated, large deletion-spanning exons 2-4 in a patient with mitochondrial acetoacetyl-CoA thiolase deficiency. Mol Genet Metab. 2006;89:222–6.

    CAS  Article  Google Scholar 

  32. 32.

    Sakurai S, Fukao T, Haapalainen AM, Zhang G, Yamada K, Lilliu F, et al. Kinetic and expression analyses of seven novel mutations in mitochondrial acetoacetyl-CoA thiolase (T2): identification of a Km mutant and an analysis of the mutational sites in the structure. Mol Genet Metab. 2007;90:370–8.

    CAS  Article  Google Scholar 

  33. 33.

    Fukao T, Boneh A, Aoki Y, Kondo N. A novel single-base substitution (c.1124A>G) that activates a 5-base upstream cryptic splice donor site within exon 11 in the human mitochondrial acetoacetyl-CoA thiolase gene. Mol Genet Metab. 2008;94:417–21.

    CAS  Article  Google Scholar 

  34. 34.

    Fukao T, Horikawa R, Naiki Y, Tanaka T, Takayanagi M, Yamaguchi S, et al. A novel mutation (c.951C>T) in an exonic splicing enhancer results in exon 10 skipping in the human mitochondrial acetoacetyl-CoA thiolase gene. Mol Genet Metab. 2010;100:339–44.

    CAS  Article  Google Scholar 

  35. 35.

    Fukao T, Nguyen HT, Nguyen NT, Vu DC, Can NT, Pham AT, et al. A common mutation, R208X, identified in Vietnamese patients with mitochondrial acetoacetyl-CoA thiolase (T2) deficiency. Mol Genet Metab. 2010;100:37–41.

    CAS  Article  Google Scholar 

  36. 36.

    Thummler S, Dupont D, Acquaviva C, Fukao T, de Ricaud D. Different clinical presentation in siblings with mitochondrial acetoacetyl-CoA thiolase deficiency and identification of two novel mutations. Tohoku J Exp Med. 2010;220:27–31.

    CAS  Article  Google Scholar 

  37. 37.

    Fukao T, Aoyama Y, Murase K, Hori T, Harijan RK, Wierenga RK, et al. Development of MLPA for human ACAT1 gene and identification of a heterozygous Alu-mediated deletion of exons 3 and 4 in a patient with mitochondrial acetoacetyl-CoA thiolase (T2) deficiency. Mol Genet Metab. 2013;110:184–7.

    CAS  Article  Google Scholar 

  38. 38.

    Buhas D, Bernard G, Fukao T, Decarie JC, Chouinard S, Mitchell GA. A treatable new cause of chorea: beta-ketothiolase deficiency. Mov Disord. 2013;28:1054–6.

    Article  Google Scholar 

  39. 39.

    Akella RR, Aoyama Y, Mori C, Lingappa L, Cariappa R, Fukao T. Metabolic encephalopathy in beta-ketothiolase deficiency: the first report from India. Brain Dev. 2014;36:537–40.

    Article  Google Scholar 

  40. 40.

    Otsuka H, Sasai H, Nakama M, Aoyama Y, Abdelkreem E, Ohnishi H, et al. Exon 10 skipping in ACAT1 caused by a novel c. 949G>A mutation located at an exonic splice enhancer site. Mol Med Rep. 2016;14:4906–10.

    CAS  Article  Google Scholar 

  41. 41.

    Nguyen KN, Abdelkreem E, Colombo R, Hasegawa Y, Can NTB, Bui TP, et al. Characterization and outcome of 41 patients with beta-ketothiolase deficiency: 10 years’ experience of a medical center in northern Vietnam. J Inherit Metab Dis. 2017;40:395–401.

    CAS  Article  Google Scholar 

  42. 42.

    Abdelkreem E, Akella RRD, Dave U, Sane S, Otsuka H, Sasai H. et al. Clinical and mutational characterizations of ten Indian patients with beta-ketothiolase deficiency. JIMD Rep. 2017;35:59–65.

    Article  Google Scholar 

  43. 43.

    Sasai H, Aoyama Y, Otsuka H, Abdelkreem E, Nakama M, Hori T, et al. Single-nucleotide substitution T to A in the polypyrimidine stretch at the splice acceptor site of intron 9 causes exon 10 skipping in the ACAT1 gene. Mol Genet Genom Med. 2017;5:177–84.

    CAS  Article  Google Scholar 

  44. 44.

    Abdelkreem E, Alobaidy H, Aoyama Y, Mahmoud S, Abd El Aal M, Fukao T. Two Libyan siblings with beta-ketothiolase deficiency: a case report and review of literature. Egypt J Med Human Genet. 2017;18:199–203.

    Article  Google Scholar 

  45. 45.

    Aoyama Y, Sasai H, Abdelkreem E, Otsuka H, Nakama M, Kumar S, et al. A novel mutation (c.12113T>A) in the polypyrimidine tract of the splice acceptor site of intron 2 causes exon 3 skipping in mitochondrial acetoacetyl-CoA thiolase gene. Mol Med Rep. 2017;15:3879–84.

    CAS  Article  Google Scholar 

  46. 46.

    Grunert SC, Schmitt RN, Schlatter SM, Gemperle-Britschgi C, Balci MC, Berg V, et al. Clinical presentation and outcome in a series of 32 patients with 2-methylacetoacetyl-coenzyme A thiolase (MAT) deficiency. Mol Genet Metab. 2017;122:67–75.

    Article  Google Scholar 

  47. 47.

    Paquay S, Bourillon A, Pichard S, Benoist JF, de Lonlay P, Dobbelaere D, et al. Mitochondrial acetoacetyl-CoA thiolase deficiency: basal ganglia impairment may occur independently of ketoacidosis. J Inherit Metab Dis. 2017;40:415–22.

    CAS  Article  Google Scholar 

  48. 48.

    Sarafoglou K, Matern D, Redlinger-Grosse K, Bentler K, Gaviglio A, Harding CO, et al. Siblings with mitochondrial acetoacetyl-CoA thiolase deficiency not identified by newborn screening. Pediatrics. 2011;128:e246–50.

    Article  Google Scholar 

  49. 49.

    Wojcik MH, Wierenga KJ, Rodan LH, Sahai I, Ferdinandusse S, Genetti CA, et al. Beta-ketothiolase deficiency presenting with metabolic stroke after a normal newborn screen in two individuals. JIMD Rep. 2017;39:45–54.

  50. 50.

    Estrella J, Wilcken B, Carpenter K, Bhattacharya K, Tchan M, Wiley V. Expanded newborn screening in New South Wales: missed cases. J Inherit Metab Dis. 2014;37:881–7.

    Article  Google Scholar 

  51. 51.

    Frazier DM, Millington DS, McCandless SE, Koeberl DD, Weavil SD, Chaing SH, et al. The tandem mass spectrometry newborn screening experience in North Carolina: 1997-2005. J Inherit Metab Dis. 2006;29:76–85.

    CAS  Article  Google Scholar 

  52. 52.

    Ozand PT, Rashed M, Gascon GG, al Odaib A, Shums A, Nester M, et al. 3-Ketothiolase deficiency: a review and four new patients with neurologic symptoms. Brain Dev. 1994;16:38–45.

    Article  Google Scholar 

  53. 53.

    Middleton B. The oxoacyl-coenzyme A thiolases of animal tissues. Biochem J. 1973;132:717–30.

    CAS  Article  Google Scholar 

  54. 54.

    Middleton B, Bartlett K. The synthesis and characterisation of 2-methylacetoacetyl coenzyme A and its use in the identification of the site of the defect in 2-methylacetoacetic and 2-methyl-3-hydroxybutyric aciduria. Clin Chim Acta. 1983;128:291–305.

    CAS  Article  Google Scholar 

  55. 55.

    Erdol S, Ture M, Yakut T, Saglam H, Sasai H, Abdelkreem E, et al. A Turkish patient with succinyl-CoA: 3-oxoacid CoA transferase deficiency mimicking diabetic ketoacidosis. J Inborn Errors Metab Screen. 2016;4:1–5.

    Article  Google Scholar 

  56. 56.

    Attia N, Sakati N, al Ashwal A, al Saif R, Rashed M, Ozand PT. Isovaleric acidemia appearing as diabetic ketoacidosis. J Inherit Metab Dis. 1996;19:85–86.

    CAS  Article  Google Scholar 

  57. 57.

    Dweikat IM, Naser EN, Abu Libdeh AI, Naser OJ, Abu Gharbieh NN, Maraqa NF, et al. Propionic acidemia mimicking diabetic ketoacidosis. Brain Dev. 2011;33:428–31.

    Article  Google Scholar 

  58. 58.

    Guven A, Cebeci N, Dursun A, Aktekin E, Baumgartner M, Fowler B. Methylmalonic acidemia mimicking diabetic ketoacidosis in an infant. Pediatr Diabetes. 2012;13:e22–25.

    CAS  Article  Google Scholar 

  59. 59.

    Bonnefont JP, Specola NB, Vassault A, Lombes A, Ogier H, de Klerk JB, et al. The fasting test in paediatrics: application to the diagnosis of pathological hypo- and hyperketotic states. Eur J Pediatr. 1990;150:80–85.

    CAS  Article  Google Scholar 

  60. 60.

    Zschocke J. HSD10 disease: clinical consequences of mutations in the HSD17B10 gene. J Inherit Metab Dis. 2012;35:81–89.

    CAS  Article  Google Scholar 

  61. 61.

    Zschocke J, Ruiter JP, Brand J, Lindner M, Hoffmann GF, Wanders RJ, et al. Progressive infantile neurodegeneration caused by 2-methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency: a novel inborn error of branched-chain fatty acid and isoleucine metabolism. Pediatr Res. 2000;48:852–5.

    CAS  Article  Google Scholar 

  62. 62.

    Robinson BH, Sherwood WG, Taylor J, Balfe JW, Mamer OA. Acetoacetyl CoA thiolase deficiency: a cause of severe ketoacidosis in infancy simulating salicylism. J Pediatr. 1979;95:228–33.

    CAS  Article  Google Scholar 

  63. 63.

    Fukao T, Song XQ, Mitchell GA, Yamaguchi S, Sukegawa K, Orii T, et al. Enzymes of ketone body utilization in human tissues: protein and messenger RNA levels of succinyl-coenzyme A (CoA):3-ketoacid CoA transferase and mitochondrial and cytosolic acetoacetyl-CoA thiolases. Pediatr Res. 1997;42:498–502.

    CAS  Article  Google Scholar 

  64. 64.

    Gibson KM, Lee CF, Kamali V, Sovik O. A coupled assay detecting defects in fibroblast isoleucine degradation distal to enoyl-CoA hydratase: application to 3-oxothiolase deficiency. Clin Chim Acta. 1992;205:127–35.

    CAS  Article  Google Scholar 

  65. 65.

    Hori T, Yamaguchi S, Shinkaku H, Horikawa R, Shigematsu Y, Takayanagi M, et al. Inborn errors of ketone body utilization. Pediatr Int. 2015;57:41–48.

    CAS  Article  Google Scholar 

  66. 66.

    Shibata N, Hasegawa Y, Yamada K, Kobayashi H, Purevsuren J, Yang Y, et al. Diversity in the incidence and spectrum of organic acidemias, fatty acid oxidation disorders, and amino acid disorders in Asian countries: selective screening vs. expanded newborn screening. Mol Genet Metab Rep. 2018;16:5–10.

    Article  Google Scholar 

  67. 67.

    Akagawa S, Fukao T, Akagawa Y, Sasai H, Kohdera U, Kino M, et al. Japanese male siblings with 2-methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency (HSD10 disease) without neurological regression. JIMD Rep. 2017;32:81–85.

    Article  Google Scholar 

  68. 68.

    Middleton B, Bartlett K, Romanos A, Gomez Vazquez J, Conde C, Cannon RA, et al. 3-Ketothiolase deficiency. Eur J Pediatr. 1986;144:586–9.

    CAS  Article  Google Scholar 

  69. 69.

    Haas RH, Marsden DL, Capistrano-Estrada S, Hamilton R, Grafe MR, Wong W, et al. Acute basal ganglia infarction in propionic acidemia. J Child Neurol. 1995;10:18–22.

    CAS  Article  Google Scholar 

  70. 70.

    Hamilton RL, Haas RH, Nyhan WL, Powell HC, Grafe MR. Neuropathology of propionic acidemia: a report of two patients with basal ganglia lesions. J Child Neurol. 1995;10:25–30.

    CAS  Article  Google Scholar 

  71. 71.

    Heidenreich R, Natowicz M, Hainline BE, Berman P, Kelley RI, Hillman RE, et al. Acute extrapyramidal syndrome in methylmalonic acidemia: “metabolic stroke” involving the globus pallidus. J Pediatr. 1988;113:1022–7.

    CAS  Article  Google Scholar 

  72. 72.

    Thompson GN, Christodoulou J, Danks DM. Metabolic stroke in methylmalonic acidemia. J Pediatr. 1989;115:499–500.

    CAS  Article  Google Scholar 

  73. 73.

    Prada CE, Villamizar-Schiller IT. Globus pallidus involvement as initial presentation of methylmalonic acidemia. Mov Disord. 2014;29:870.

    Article  Google Scholar 

  74. 74.

    Scholl-Burgi S, Haberlandt E, Gotwald T, Albrecht U, Baumgartner Sigl S, Rauchenzauner M, et al. Stroke-like episodes in propionic acidemia caused by central focal metabolic decompensation. Neuropediatrics. 2009;40:76–81.

    CAS  Article  Google Scholar 

  75. 75.

    Cazorla MR, Verdu A, Perez-Cerda C, Ribes A. Neuroimage findings in 2-methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency. Pediatr Neurol. 2007;36:264–7.

    Article  Google Scholar 

  76. 76.

    Sass JO, Forstner R, Sperl W. 2-Methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency: impaired catabolism of isoleucine presenting as neurodegenerative disease. Brain Dev. 2004;26:12–4.

    Article  Google Scholar 

  77. 77.

    Murin R, Mohammadi G, Leibfritz D, Hamprecht B. Glial metabolism of isoleucine. Neurochem Res. 2009;34:194–204.

    CAS  Article  Google Scholar 

  78. 78.

    Mitchell GA, Gauthier N, Lesimple A, Wang SP, Mamer O, Qureshi I. Hereditary and acquired diseases of acyl-coenzyme A metabolism. Mol Genet Metab. 2008;94:4–15.

    CAS  Article  Google Scholar 

  79. 79.

    Rosa RB, Schuck PF, de Assis DR, Latini A, Dalcin KB, Ribeiro CA, et al. Inhibition of energy metabolism by 2-methylacetoacetate and 2-methyl-3-hydroxybutyrate in cerebral cortex of developing rats. J Inherit Metab Dis. 2005;28:501–15.

    CAS  Article  Google Scholar 

  80. 80.

    Leipnitz G, Seminotti B, Amaral AU, Fernandes CG, Dutra-Filho CS, Wajner M. Evidence that 2-methylacetoacetate induces oxidative stress in rat brain. Metab Brain Dis. 2010;25:261–7.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank Professor emeritus Tadao Orii (Gifu University) and Professor emeritus Seiji Yamaguchi (Shimane University) for their mentorship, Professor Grant Mitchell and Professor Oliver Sass for long-term collaborations and for discussions on defective ketone body metabolism. We also thank Ms Naomi Sakaguchi for her dedicated assistance with laboratory work. This research was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan [Grant Numbers 16K09962, 15K01693], by AMED under Grant Number JP17ek0109276, and by Health and Labour Sciences Research Grants (H29-nanchitou(nan)-ippan-051) for Research on rare and intractable diseases. We thank Jeremy Allen, PhD, from Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript.

Funding

This research was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan [Grant Numbers 16K09962, 15K01693], by AMED under Grant Number JP17ek0109276, and by Health and Labour Sciences Research Grants [H29-nanchitou(nan)-ippan-051] for Research on rare and intractable diseases.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Fukao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fukao, T., Sasai, H., Aoyama, Y. et al. Recent advances in understanding beta-ketothiolase (mitochondrial acetoacetyl-CoA thiolase, T2) deficiency. J Hum Genet 64, 99–111 (2019). https://doi.org/10.1038/s10038-018-0524-x

Download citation

Further reading

Search

Quick links