Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

GAREM1 regulates the PR interval on electrocardiograms

Abstract

PR interval is the period from the onset of P wave to the start of the QRS complex on electrocardiograms. A recent genomewide association study (GWAS) suggested that GAREM1 was linked to the PR interval on electrocardiograms. This study was designed to validate this correlation using additional subjects and examined the function of Garem1 in a mouse model. We analyzed the association of rs17744182, a variant in the GAREM1 locus, with the PR interval in 5646 subjects who were recruited from 2 Korean replication sets, Yangpyeong (n = 2471) and Yonsei (n = 3175), and noted a significant genomewide association by meta-analysis (P = 2.39 × 10−8). To confirm the function of Garem1 in mice, Garem1 siRNA was injected into mouse tail veins to reduce the expression of Garem1. Garem1 transcript levels declined by 53% in the atrium of the heart (P = 0.029), and Garem1-siRNA injected mice experienced a significant decrease in PR interval (43.27 ms vs. 44.89 ms in control, P = 0.007). We analyzed the expression pattern of Garem1 in the heart by immunohistology and observed specific expression of Garem1 in intracardiac ganglia. Garem1 was expressed in most neurons of the ganglion, including cholinergic and adrenergic cells. We have provided evidence that GAREM1 is involved in the PR interval of ECGs. These findings increase our understanding of the regulatory signals of heart rhythm through intracardiac ganglia of the autonomic nervous system and can be used to guide the development of a therapeutic target for heart conditions, such as atrial fibrillation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Heeringa J, van der Kuip DA, Hofman A, Kors JA, van Herpen G, Stricker BH, et al. Prevalence, incidence and lifetime risk of atrial fibrillation: the Rotterdam study. Eur Heart J. 2006;27:949–53.

    Article  PubMed  Google Scholar 

  2. 2.

    Ferguson C, Inglis SC, Newton PJ, Middleton S, Macdonald PS, Davidson PM, et al. Atrial fibrillation: stroke prevention in focus. Aust Crit Care. 2014;27:92–8.

    Article  PubMed  Google Scholar 

  3. 3.

    Smith JG, Lowe JK, Kovvali S, Maller JB, Salit J, Daly MJ, et al. Genome-wide association study of electrocardiographic conduction measures in an isolated founder population: Kosrae. Heart Rhythm. 2009;6:634–41.

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    DeFilippis AP, Larned JM, Cole JH, Nell-Dybdahl C, Miller JI, Sperling LS. Clues to cardiovascular risk: an office-based approach. Prev Cardiol. 2007;10:36–41.

    Article  PubMed  Google Scholar 

  5. 5.

    Milan DJ, Lubitz SA, Kaab S, Ellinor PT. Genome-wide association studies in cardiac electrophysiology: recent discoveries and implications for clinical practice. Heart Rhythm. 2010;7:1141–8.

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Schwartz PJ, Wolf S. QT interval prolongation as predictor of sudden death in patients with myocardial infarction. Circulation. 1978;57:1074–7.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Pfeufer A, van Noord C, Marciante KD, Arking DE, Larson MG, Smith AV, et al. Genome-wide association study of PR interval. Nat Genet. 2010;42:153–9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Holm H, Gudbjartsson DF, Arnar DO, Thorleifsson G, Thorgeirsson G, Stefansdottir H, et al. Several common variants modulate heart rate, PR interval and QRS duration. Nat Genet. 2010;42:117–22.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Sotoodehnia N, Isaacs A, de Bakker PI, Dorr M, Newton-Cheh C, Nolte IM, et al. Common variants in 22 loci are associated with QRS duration and cardiac ventricular conduction. Nat Genet. 2010;42:1068–76.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Pfeufer A, Sanna S, Arking DE, Muller M, Gateva V, Fuchsberger C, et al. Common variants at ten loci modulate the QT interval duration in the QTSCD Study. Nat Genet. 2009;41:407–14.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Newton-Cheh C, Eijgelsheim M, Rice KM, de Bakker PI, Yin X, Estrada K, et al. Common variants at ten loci influence QT interval duration in the QTGEN Study. Nat Genet. 2009;41:399–406.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Chambers JC, Zhao J, Terracciano CM, Bezzina CR, Zhang W, Kaba R, et al. Genetic variation in SCN10A influences cardiac conduction. Nat. Genet. 2010;42:149–52.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Smith JG, Magnani JW, Palmer C, Meng YA, Soliman EZ, Musani SK, et al. Genome-wide association studies of the PR interval in African Americans. PLoS Genet. 2011;7:e1001304.

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Butler AM, Yin X, Evans DS, Nalls MA, Smith EN, Tanaka T, et al. Novel loci associated with PR interval in a genome-wide association study of 10 African American cohorts. Circ Cardiovasc Genet. 2012;5:639–46.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Hong KW, Lim JE, Kim JW, Tabara Y, Ueshima H, Miki T, et al. Identification of three novel genetic variations associated with electrocardiographic traits (QRS duration and PR interval) in East Asians. Hum Mol Genet. 2014;23:6659–67.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Kim JW, Hong KW, Go MJ, Kim SS, Tabara Y, Kita Y, et al. A common variant in SLC8A1 is associated with the duration of the electrocardiographic QT interval. Am J Hum Genet. 2012;91:180–4.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Blagoev B, Ong SE, Kratchmarova I, Mann M. Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nat Biotechnol. 2004;22:1139–45.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Tashiro K, Tsunematsu T, Okubo H, Ohta T, Sano E, Yamauchi E, et al. GAREM, a novel adaptor protein for growth factor receptor-bound protein 2, contributes to cellular transformation through the activation of extracellular signal-regulated kinase signaling. J Biol Chem. 2009;284:20206–14.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Choi S, Jung S, Kim MK, Shin J, Shin MH, Shin DH, et al. Gene and dietary calcium interaction effects on brachial-ankle pulse wave velocity. Clin Nutr. 2016;35:1127–34.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 2009;5:e1000529.

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Park SY, Lee HJ, Ji SM, Kim ME, Jigden B, Lim JE, et al. ANTXR2 is a potential causative gene in the genome-wide association study of the blood pressure locus 4q21. Hypertens. Res. 2014;37:811–7.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Shin YB, Lim JE, Ji SM, Lee HJ, Park SY, Hong KW, et al. Silencing of Atp2b1 increases blood pressure through vasoconstriction. J Hypertens. 2013;31:1575–83.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Ji SM, Shin YB, Park SY, Lee HJ, Oh B. Decreases in Casz1 mRNA by an siRNA complex do not alter blood pressure in mice. Genomics Inform. 2012;10:40–3.

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Kim MJ, Lim JE, Oh B. Validation of non-invasive method for electrocardiogram recording in mouse using lead II. Biomed Sci Lett. 2015;21:1–9.

    Article  Google Scholar 

  25. 25.

    Mitchell GF, Jeron A, Koren G. Measurement of heart rate and Q-T interval in the conscious mouse. Am J Physiol. 1998;274:H747–51.

    CAS  PubMed  Google Scholar 

  26. 26.

    Gotham SM, Fryer PJ, Paterson WR. The measurement of insoluble proteins using a modified Bradford assay. Anal Biochem. 1998;173:353–8.

    Article  Google Scholar 

  27. 27.

    Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–5.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Ioannidis JP, Patsopoulos NA, Evangelou E. Heterogeneity in meta-analyses of genome-wide association investigations. PLoS ONE. 2007;2:e841.

    Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Fay MP, Proschan MA. Wilcoxon-Mann-Whitney or t-test? On assumptions for hypothesis tests and multiple interpretations of decision rules. Stat Surv. 2010;4:1–39.

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Ariyarajah V, Prajapat L, Kumar KK, Barac I, Apiyasawat S, Spodick DH. Quantitative estimation of left atrial linear dimension on a transthoracic echocardiogram using an electrocardiographic formulaic assessment. Am J Cardiol. 2007;100:894–8.

    Article  PubMed  Google Scholar 

  32. 32.

    Rimmer K, Harper AA. Developmental changes in electrophysiological properties and synaptic transmission in rat intracardiac ganglion neurons. J Neurophysiol. 2006;95:3543–52.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Pauza DH, Skripka V, Pauziene N. Morphology of the intrinsic cardiac nervous system in the dog: a whole-mount study employing histochemical staining with acetylcholinesterase. Cells Tissues Organs. 2002;172:297–320.

    Article  PubMed  Google Scholar 

  34. 34.

    Hou Y, Scherlag BJ, Lin J, Zhang Y, Lu Z, Truong K, et al. Ganglionated plexi modulate extrinsic cardiac autonomic nerve input: effects on sinus rate, atrioventricular conduction, refractoriness, and inducibility of atrial fibrillation. J Am Coll Cardiol. 2007;50:61–8.

    Article  PubMed  Google Scholar 

  35. 35.

    Hou Y, Scherlag BJ, Lin J, Zhou J, Song J, Zhang Y, et al. Interactive atrial neural network: determining the connections between ganglionated plexi. Heart Rhythm. 2007;4:56–63.

    Article  PubMed  Google Scholar 

  36. 36.

    Kapa S, Venkatachalam KL, Asirvatham SJ. The autonomic nervous system in cardiac electrophysiology: an elegant interaction and emerging concepts. Cardiol Rev. 2010;18:275–84.

    Article  PubMed  Google Scholar 

  37. 37.

    Klein HU, Ferrari GM. Vagus nerve stimulation: A new approach to reduce heart failure. Cardiol J. 2010;17:638–44.

    PubMed  Google Scholar 

  38. 38.

    Katritsis DG. Autonomic denervation for the treatment of atrial fibrillation. Indian Pacing Electrophysiol J. 2011;11:161–6.

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Hwang C, Wu TJ, Doshi RN, Peter CT, Chen PS. Vein of marshall cannulation for the analysis of electrical activity in patients with focal atrial fibrillation. Circulation. 2000;101:1503–5.

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Chen SA, Tai CT. Catheter ablation of atrial fibrillation originating from the non-pulmonary vein foci. J Cardiovasc Electrophysiol. 2005;16:229–32.

    Article  PubMed  Google Scholar 

  41. 41.

    Lin WS, Tai CT, Hsieh MH, Tsai CF, Lin YK, Tsao HM, et al. Catheter ablation of paroxysmal atrial fibrillation initiated by non-pulmonary vein ectopy. Circulation. 2003;107:3176–83.

    Article  PubMed  Google Scholar 

  42. 42.

    Po SS, Nakagawa H, Jackman WM. Localization of left atrial ganglionated plexi in patients with atrial fibrillation. J Cardiovasc Electrophysiol. 2009;20:1186–9.

    Article  PubMed  Google Scholar 

  43. 43.

    Petraitiene V, Pauza DH, Benetis R. Distribution of adrenergic and cholinergic nerve fibres within intrinsic nerves at the level of the human heart hilum. Eur J Cardiothorac Surg. 2014;45:1097–105.

    Article  PubMed  Google Scholar 

  44. 44.

    Cui B, Lu Z, He B, Hu X, Wu B, Xu S, et al. Acute effects of ganglionated plexi ablation on sinoatrial nodal and atrioventricular nodal functions. Auton Neurosci. 2011;161:87–94.

    Article  PubMed  Google Scholar 

  45. 45.

    Taniguchi T, Tanaka S, Ishii A, Watanabe M, Fujitani N, Sugeo A, et al. A brain-specific Grb2-associated regulator of extracellular signal-regulated kinase (Erk)/mitogen-activated protein kinase (MAPK) (GAREM) subtype, GAREM2, contributes to neurite outgrowth of neuroblastoma cells by regulating Erk signaling. J Biol Chem. 2013;288:29934–42.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Nishino T, Matsunaga R, Konishi H. Functional relationship between CABIT, SAM and 14-3-3 binding domains of GAREM1 that play a role in its subcellular localization. Biochem Biophys Res Commun. 2015;464:616–21.

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Kanno H, Horikawa Y, Hodges RR, Zoukhri D, Shatos MA, Rios JD, et al. Cholinergic agonists transactivate EGFR and stimulate MAPK to induce goblet cell secretion. Am J Physiol Cell Physiol. 2003;284:C988–98.

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Rosenblum K, Futter M, Jones M, Hulme EC, Bliss TV. ERKI/II regulation by the muscarinic acetylcholine receptors in neurons. J. Neurosci. 2000;20:977–85.

    CAS  PubMed  Google Scholar 

  49. 49.

    Fukunaga K, Miyamoto E. Role of MAP kinase in neurons. Mol Neurobiol. 1998;16:79–95.

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Cowley S, Paterson H, Kemp P, Marshall CJ. Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell. 1994;77:841–52.

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    English JD, Sweatt JD, A requirement for the mitogen-activated protein kinase cascade in hippocampal long term potentiation. J Biol Chem.1997;272:19103–6

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (nos. 2014R1A2A2A01005277 and 2015R1C1A2A01052431). Genotype data were produced using the Korean Chip (K-CHIP) available through the K-CHIP consortium. K-CHIP was designed by Center for Genome Science, Korea National Institute of Health, Korea (4845-301, 3000-3031).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yangsoo Jang, Jinho Shin or Bermseok Oh.

Ethics declarations

Conflict of interests

The authors declare no competing financial interests.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, H.O., Lim, J.E., Kim, M.J. et al. GAREM1 regulates the PR interval on electrocardiograms. J Hum Genet 63, 297–307 (2018). https://doi.org/10.1038/s10038-017-0367-x

Download citation

Search

Quick links